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IX

PREFACE

Two years ago, I took my six-year-old son to a “robot race” up in the Rockies near
Boulder. It was held in the community center of a small mountain town. Nevertheless,
it was packed with about 100 enthusiastic people and many interesting exhibits. The
central event was to be a timed race along a prescribed course. Several school-aged kids
had entered plastic robots clearly built from parts from the same toy manufacturer. The
racecourse was a plastic mat approximately 15 feet on each side. The robots had to fol-
low a one-inch-wide, serpentine black line on the mat from beginning to end. The win-
ner would be the robot finishing with the fastest time.

I watched the kids tuning up their robots on the racecourse before the race. Each robot
had a sensor on each side that could detect the black line. If the robot moved forward
and started to cross the line, the electronics would correct the steering and move the
robot back on course.

It was clear the kids were all having trouble. None of the robots could follow the
course from beginning to end. They would invariably lurch too far over the black race-
course line and get lost, spinning in useless circles. Legions of adult advisors huddled
with the kids, making all sorts of changes, yet nobody was making progress. To me, the
answer was obvious and I wanted to help.
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Off in the corner, a bit cowed and unsure of himself, was the youngest competitor.
Let’s call him Sam. He may have been 13 and was there with his mom. They, too, were
making changes without good results. I approached Sam’s mom, discretely asked per-
mission to help, and joined their team. Without going into the theory, I explained that
the robots were all too fast and powerful for their own control systems. I recommended
slowing down Sam’s robot by adding more weight at the back end. We finally decided
to build a sled for the robot to drag and set about finding the materials. With the race
deadline approaching, Sam himself came up with the solution. With a quick glance to
ask permission, he grabbed his mom’s handheld camera and slipped the wrist strap over
a post on the rear of the robot. We confirmed the robot could still move slowly down the
racecourse line towing the camera. Sam took the batteries out of the camera until it was
near the right weight. All too soon, race time came and we had to halt our experiment.

One after another, the older competitors’ robots raced down the course only to stray
off the black line and be disqualified. A couple of the robots did finish after wandering
around lost and wasting a good deal of time. Eventually, the time came for Sam to race
his robot. He placed his robot on the starting line, plopped his mom’s camera down
behind it, confidently put the wrist strap on the rear bumper, and pushed the start but-
ton with a bit of ceremony. As Sam’s robot left the starting line, it lurched forward, tug-
ging the camera behind it. The crowd started to buzz and I watched the highly amused
advisors talking among themselves. It was clear some of them understood what was
going on.

To make a long story short, Sam’s robot reliably chugged around the racecourse and
he won. The look on his face alone was worth the effort. Sam’s nominal reward was a
kit for a bigger robot, but I think he walked away with much more than that.

After the race, Sam was eager to know how I knew the solution. I took Sam aside and
gave him a glimpse of the college-level mathematics and graphs that were behind his
victory. My intention was to stimulate his curiosity and point him in the direction that
would lead him to further accomplishments. I went home feeling wonderful, proud for
myself, and happy for Sam.

After all, everyone seeks direction in life. We experience a feeling of comfort when
we discover that our problems are definitive, comprehensible, and tractable. To build a
successful robot, it takes a disciplined approach. Many pitfalls are possible, but they are
not inevitable. The subjects you will have to master are many and difficult, but not
incomprehensible.

To be clear, it is not the intention of my book to teach you how to build a robot. Others
can find the nuts and bolts better than I, but if you want to come away enriched with the
seminal knowledge of the academic and professional disciplines necessary to be suc-
cessful in the field, then this book is for you. Each major discipline is the subject of a
separate chapter. Each chapter will cover the basics but will also lead you to theory and
reasoning that can capture the imagination. For each discipline, legions of engineers
and professors spend their entire careers sweating the details.

Sam, if you’re out there, I hope one of them is you.

X PREFACE
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INTRODUCTION

The boundless energy of youth often must give way to the laws of physics. All too
often I’ve seen bright ideas flounder for a lack of fundamental knowledge. If this book
can foster the development of the art, if it can encourage and educate the robotic com-
munity, if it can provide the missing ingredients—the secret sauce—then I did my job
right. If you have a sense that a robot is more than wires and wheels, then this book is
for you.

Math rules physics, and physics rules robots. This book sheds light on the math and
physics behind a robot design, and does so in an accessible way. The text was written
for all ages, from high school through college and beyond. The math used in the book
includes algebra, calculus, and differential equations. For readers unacquainted with
these subjects, I made sure the text “returns to Earth” often. Nobody should be left
behind. The laws of physics and math are evident in everyday life, and several exam-
ples are given in this book. Throughout the history of science and technology, the path
to great discoveries has almost always started with the observation of simple events.
Newton’s apple, Einstein’s empty room in space, and Shannon’s word games are clear
examples. Proceeding from an intuitive, personal understanding of the basic laws of

XI
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physics and math, you can take your understanding further. Using this knowledge, you
can predict the behavior of your robot in advance. As problems crop up, you’ll have the
basic knowledge to move effectively toward solutions.

Throughout the book, I’ve also thrown in experience gained from 32 years of engi-
neering design. I can’t be there when you build your robot, but I can put tools in your
belt and pass on such wisdom as we both can sit still for.

Originally, I started this project for the fame, fortune, and groupies. As the chapters
rolled out, I got my true rewards. I relearned the basic technologies to better explain
them. I dug into the larger questions lurking behind the equations and technology. And
as the book developed, I found an outlet for other thoughts I’ve had for quite some time.
I hope my philosophical asides prove entertaining.

The book is divided into chapters that deal with monolithic subjects like computer
hardware, computer software, digital signal processing (DSP), communications, power,
and control systems. It is my hope that readers will find these individual subjects com-
pelling enough to pursue them further. In each chapter, I’ve included URLs for web sites
that explain the technologies in more depth. The Web can be a great place to obtain a
continuing education.

Chapter 1 covers project management. More robots bite the dust for a lack of man-
agement discipline than any other reason. Building robots is much like going into bat-
tle. You can do great damage coming straight out of the gate and swinging swords, but
it takes planning to make sure only the enemy gets cut. The chapter outlines how to
approach a robot project from the outset. It includes development process flowcharts,
checklists, and lots of tips. Robots are not built; they are born. With forethought and
preparation, the process can be much less painful. And lest we forget, the project
depends on people. Motivation and management, of self and others, are required for
success.

Chapter 2 covers control systems. This is a complex field with a language of its own
and many disciplines. If someone were to gather data about why robot projects fail, I’m
guessing mechanics and power problems would come first. Control system problems
would be right up there, too. The chapter discusses control system architecture; dis-
tributed and centralized control systems are compared and contrasted. Most robots have
centralized systems and use open-loop and closed-loop control methods. The text out-
lines the basic behavior of a second order-control system, a good model for the behav-
ior of many robotic systems. The text explains the math needed to understand and
control system behavior. Specific examples of ways to design and correct such a con-
trol system are also given. Last of all, I’ve thrown in all the tricks of the trade that
I know.

Chapter 3 covers computer hardware. I’ve outlined many of the reasons for using a
computer in a robot and ways to accelerate the design process. Several computer archi-
tectures are listed, including analog, general-purpose digital, DSP, neural networks, and
parallel processors. I’ve outlined the basic architecture of general-purpose digital

XII INTRODUCTION
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microprocessors and commented on the applicability of various computer options. Just
as the lack of planning can ruin a robot project, so too can the wrong choice of micro-
processor. The last part of the chapter has a large checklist that can help you through
the process of selecting a computer.

Chapter 4 covers reliability, safety, and compliance. The first section defines relia-
bility and provides methods for predicting and measuring it. The chapter also includes
a list of components to be wary of and some advice about using them. In the safety sec-
tion is a list of dangers that can sneak up on even the most experienced designers, and
it also offers advice about managing risks. The compliance and testing section covers
environmental considerations, emissions, and many tips for forestalling problems.

Chapter 5 covers the early stage of the design process, the high-level design (HLD).
The text covers where to start, what to consider first, and how to make the design gel
early. Although every robotic project will be different, I wanted the chapter to document
how I would go about designing a robot. I closed my eyes, gave myself a phantom team
of engineers, and wrote down what I’d do. Let me know if you’d do it differently.

Chapter 6 covers power and energy. First, I discuss how to determine the robot’s
energy requirements. It outlines a series of considerations that should be taken into
account in the selection and use of an energy source, with a specific concentration on
batteries.

Chapter 7 covers energy and software control systems, with an emphasis on energy
management. It includes a list of specific actions to take in the design of an energy-
efficient robot. I mentioned many considerations that should be kept in mind during the
selection and design of robotic software. The chapter outlines a coordinated approach
to the selection of a processor, a battery, a power supply, operating software, and appli-
cation software. Included are many software techniques that have proven successful,
including a discussion of braking methods.

Chapter 8 covers DSP and the chapter starts with an example of DSP processing that
is familiar to all of us. This leads to the two basic theorems of DSP. Specific examples
illustrate the need for both learning and using the theorems. The chapter includes dif-
ferent methods of constructing a classic DSP control system. I’ve included rules of
thumb for picking components, methods for programming them, and ways to test them.

Chapter 9 covers communication, which is vital to the effectiveness and power of
people, and robots are not far behind in this need. The chapter starts with the definition
of communication, the concept of noise, and Shannon’s theorem for the capacity of a
noisy communications link. I discuss baseband transmission, the basic techniques for
sending pulses down a wire, and the common baseband communication links, includ-
ing the Ethernet. The chapter outlines the reasons for modulated communication and
some of the methods for doing so. The emphasis is on the transmission of digital data
and the control of errors in a noisy communication channel. I’ve explained several
methods of encoding the data that make modern wireless communication possible. The
chapter lists and explains many of the standard tools used by communication engineers,

INTRODUCTION XIII
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including coding, multiuser access, security, and compression. Lastly, I’ve described a
few of the most popular communication protocols that can be used in a robot project.

Chapter 10 covers motors. Engineers classify motors by the type of power they con-
sume. AC and DC motors (including stepping motors) are discussed along with the dif-
ferent internal structures that make them work. The advantages and disadvantages of
each type are presented as well.

Chapter 11 covers mechanics and covers the selection and the relevant properties of
materials. Many robots have mechanical problems, so several design tips are included.
In addition, short sections are dedicated to static and dynamic calculations.

XIV INTRODUCTION
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PROJECT MANAGEMENT

Act 1 Scene 1:
The graying professor stands in his graying tweed suit in an overly heated classroom

with high windows and ceramic tiles on the wall. The asbestos-covered steam pipes
clank and bang as he stares out from behind his ridiculously high podium over a class-
room of eager, young robot builders seated in hard, creaking wooden chairs. There is a
long silence until his lowers his glasses, leans forward, and slowly intones the follow-
ing in his best Stentorian English.

“So you want to build a robot, do you? Well, I am reminded of a wonderful scene in
the movie Young Frankenstein by Mel Brooks. The son of the famous Dr. Frankenstein
is addressed in a conversation by his proper last name pronounced ‘Frankenstein.’What
follows is an embarrassing, slow, pregnant pause in the conversation. The young doc-
tor leans forward and slowly corrects his friend, ‘That’s pronounced “frahnkensteen.”

Just what is the fascination with robots anyway? If you remember nothing else in this
book, remember this frahnkensteen phrase. Like no other, this technical field engen-
ders passion.

It’s important that you let that phrase sink in a couple of days before picking up a
screwdriver. For from passion springs forces that we cannot understand. Love, joy,

1

1
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creativity, heartbreak, grief, and ruin all lurk to snare us as we move forward in this
endeavor. And passion makes it all possible! Personally, I feel it’s just as important to
understand why I’m doing these things as it is to actually do them. I am old enough to
realize that I will never fully understand my motives, nor should I. If I really found out
exactly why I liked this field, the fantasy would probably be gone and I’d have to move
on to something else.

Something is deliciously evil about trying to construct robots to carry out our bid-
ding when we do not even know our own wishes and desires. Think about that. Have
you ever seen the movie Forbidden Planet? It’s a great, old science fiction movie par-
tially based on Shakespeare’s play The Tempest. I won’t give away the movie’s plot, but
suffice it to say that a bright human gains control of a robot built by an advanced civi-
lization. What ensues, as the robot carries out his new master’s “will,” is mayhem.

My point is this. Let me persuade you to stop and think first. Spend the time to ana-
lyze your motives and desires. Take the time to plan. This is not just a spiritual or psy-
chological exercise, but it has a practical application and tangible rewards covering the
spectrum from personal growth to the success of the project.

Taking this a step further, let me teach you something about the “nontechnical” art of
project management first. It’s a little known fact, but practicing a bit of project manage-
ment makes it far less likely that your robot will run amuck and blow up the planet or
that your family members will have to change their names to show their faces in public.

Project Management
Classically, a project is an endeavor to carry out some specific purpose. One English
dictionary defines it as “a planned undertaking.” We should note, for the record, that
the Ape-English dictionary at www.ac.wwu.edu/�stephan/Tarzan/tarzan.dict.html has
no entries for the words project, plan, or management. So if we are to maintain our
species’ lead over the apes, let’s elevate our project management practices.

Why does a project require management? Webster’s dictionary says a project requires
planning. Webster did, after all, successfully finish his dictionary. Then again, we know
of few people who have heeded Webster’s advice in life. So let’s look deeper than
Webster’s definition. Generally, a project has three elements: a deadline, a required out-
come, and a budget. Maybe the project has no deadline, and maybe we don’t know what
the outcome is to be yet, but the project probably has a budget; any project always has
some kind of financial limit, beyond which it will be cancelled. I’d like to make a case
for having all three elements in the project.

2 CHAPTER ONE
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The following discussion is based on project management processes used within a
large company. The robot hobbyist, despite that fact that he or she wears all the hats in
the project, should still perform the basic tasks of a project manager (PM). This is due
to two reasons. First, the project will suffer if steps are skipped. Second, learning the
art of being a PM is well worth it and will further any career.

The classic reason for managing a project is that some of the requirements will not
otherwise be met. The truth is, even the most professional PMs have difficulty meeting
all their goals at the same time. Half the time, a project will be late, be over budget, or
fail to deliver the required results. If these goals were easy to attain, PMs would not be
required in the first place. By implication, if no projects had PMs, the results would be
much worse.

Many projects do not have formal PMs. Often, an engineer on the project handles
some of the PM duties as a side task. Sometimes the PM duties are distributed among
a few people, often with poor results. One person should be the PM and should be in
complete charge of the project. That person should have all the powers and responsi-
bilities of a PM. If you are the PM in your spare time, that’s fine, as long as you can
perform the tasks in the time you have to devote to the job.

First and foremost, a PM in a robot project is responsible for getting the robot done
within all the restraints and requirements imposed at the outset. Certainly, a project can
be executed and managed in almost any manner. To bring order to the situation, and to
give all participants a clear picture of what’s expected, it makes sense to use established
methods and rules. The following discussion lays out the basics of project management
processes but omits some of the details and reasoning to make it more readable.

Projects come in all shapes and sizes, and they are executed in all shapes and forms.
This document provides a standard way to manage projects that is known to all respon-
sible parties. It provides management tools that PMs can use to alter the course of a
project and make corrections. This makes information easier to find, decreases the
amount of negotiations involved, provides reliable channels of communication, and
brings a level of comfort to all involved.

Project Process Flowchart
Figure 1-1 is a graphical representation of the various processes and procedures that
will occur during the overall development cycle of the robot. The overall process is flex-
ible, and deviations are acceptable as befits the situation. However, in general, devia-
tions from the set process come at a sacrifice (see Figure 1-1).

PROJECT MANAGEMENT 3

01_200256_CH01/Bergren  4/17/03  11:23 AM  Page 3



4 CHAPTER ONE

FIGURE 1-1 Steps in managing a project

 Identify the Project and Commission It. 

Write the Project Proposal and Review 

Appoint a PM 

Write the Project Plan and Review 

Find Project Resources 

Write Functional Specifications and Review 

Write High Level Design Docs (HLD) and Review  
(Both Optional) 

Execute the Plan (Development) 
Weekly Reporting 

By Week 2 

By Week 5 
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How This Works When 
It’s Implemented Right
In no particular order, these are some of the results and understandings that should come
out of the proper application of this process.

The User’s Manual for the “Boss”
The following words of advice pertain to the management of your robot development
effort. If you are a lone robot hobbyist or operator, you are the management as well and
should heed these general rules. This also applies to employees of a company involved
in such a project.

PROJECTS ARE SHORT

Projects should be kept under six months. Ideally, most projects should be three to four
months long at most. This means that any very long term robot projects should be bro-
ken up into a series of smaller projects. Divide the project up into functional blocks like
power, chassis, control systems, and so on. This automatically engenders a complete
review of all aspects of a long project at periodic intervals. By default, this includes the
choice of PM, all project plans, all project resources, and so on. The following is a list
of benefits that will accrue if short projects are the norm.

� PMs don’t delay the project work while they get a long plan worked out. They can
afford to make some mistakes over a shorter time period. These mistakes will be
corrected in the next leg of the project.

� Long-term goals can be accomplished using a series of short-term goals and mak-
ing corrections along the way.

PMS RUN THE PROJECTS

The PM is responsible for all aspects of the project after kickoff. “Management” might
spawn the project and set the major goals, but it is the PM that runs with that informa-
tion, makes a project proposal, makes a project plan (including the schedule, budget,
resources, and so on.), finds the resources, executes the plan, builds the robot, and
reports on a regular basis.

PROJECT MANAGEMENT 5
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APPOINTING PMS

A PM must be well matched to a project. Don’t overlook the fact that you might not be
the right choice to be the PM! Some engineer make good PMs; others don’t. The skill
sets required for the two disciplines are much different.

KEEP THE PROJECT STABLE

Here are a few rules to observe:

� Don’t change the tasks. Keep the specification (hereafter referred to as spec) sta-
ble after the project starts. The PM should give all parties the chance to change
the spec up to the point when it is reviewed and development begins. If the spec
must change, rewrite the project plan to accommodate the changes. Changing the
spec is the second fastest way to scuttle a project’s schedule and budget.

� Don’t mess with the resources. Yes, this is the fastest way to scuttle a project’s
schedule and budget. Do not shift out resources once they have been allocated to
a project. Don’t borrow people, don’t borrow equipment, and don’t borrow space.

CORRECTIVE ACTIONS

When things are going well, about a third of all projects will still run into schedule or
budget problems. Often, these projects can be identified early and corrective action can
be taken. What can be done?

� Schedule a project review.
� Ask the PM for changes in the project plan, the project resources, and the project

task as necessary.
� Change the PM. This is often a drastic solution, but it should not be avoided. Nor

should the loss of a project be considered a significant black mark. Many new
opportunities will arise for a PM to prove his or her mettle.

� Add more management. Sometimes a PM needs sub-PMs. This is often useful in
large projects and can even be set up before the project starts.

The User’s Manual for PMs
A checklist is provided at the end of this section that can serve as your guide through-
out your robot project. The following paragraphs explain this checklist.

6 CHAPTER ONE
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STARTING A PROJECT

Management currently identifies the need for a robot and determines the general
requirements. This information usually comes to PMs verbally. A PM is assigned to
manage the project. This assignment is for the duration of the project and is therefore
temporary. In practice, a good PM is very valuable, so success in a project generally
brings further appointments and further projects. However, failures will happen since
the skills required to be a good PM are not the same skills possessed by even the best
engineers. Being a good PM takes training, skill, and talent, and even the best PMs will
trip up now and then. It is most important that you remember this. If you are a PM and
sense you are in trouble, report it to your manager. This is the best course of action for
many reasons and management should encourage it.

That said, let’s assume you are the newly appointed PM of a new project. Please real-
ize you have a large vertical management responsibility now. It spans sales, marketing,
business, management, engineering, production, and service. Run the project like it’s a
business unto itself. The “business” is the best tool you have to help you succeed in your
project. Use the support available for your mission: resources, space, equipment, guid-
ance, personnel, and all other resources needed to succeed. But you have to tell man-
agement (as far in advance as possible) what is needed and what must be done. Provide
all the initiative.

A further word of advice: Try to do things in the order of the following checklist. You
can start portions of the project in parallel (like starting development before the plan or
specification is drafted), but the risk (and potential waste) rapidly mounts. Insist on
doing things in order.

RECORD KEEPING

For the moment, use the checklist to record the location of all files (documents) that are
mentioned on the checklist. Keep a labeled, three-ring project notebook containing the
documents and put the checklist in the first flyleaf.

PROJECT PROPOSAL

When management brings you a robot project, it generally is given in a verbal assign-
ment. Your first task will be to write a project proposal, schedule the review meeting,
circulate the proposal to the reviewers a day in advance, and preside over the review
meeting. The purpose of the proposal is to crystallize thinking and estimate the costs
and complexities involved. Interview the managers that commissioned the robot, sen-
ior engineers, marketing, and all other pertinent associates to obtain their opinions on
all aspects of the proposal submission.
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Write the proposal so someone unacquainted with the project could understand it.
Describe what the robot project is, how it can be accomplished, and what resources are
required. It should not take longer than eight hours of actual work (perhaps one week
of elapsed time) for the interviews and for writing the proposal. The proposal is gener-
ally three to six pages long. The project proposal should have the following sections:

� Title page This would be something like “Project Proposal XYZ.”
� Project description Describe to a general audience what type of robot project

is needed and why it is being done. In a few paragraphs, try to describe the entire
project. A simple graphic helps greatly. This section is often a page or two long,
and a simple concept sketch of the robot would be appreciated.

� Assumptions List all the assumptions you are making that must be met for the
project to go as you expect it to. This might include the existence of off-the-shelf
software, timely deliveries from third parties, enabling technology, and so on. If
some of these assumptions are incorrect, those reviewing your proposal can gauge
your chance for success. Often, a half-dozen items are included on this list.

� Statement of work List all the work that will be performed during the project,
with an emphasis on the largest blocks of work. The object is to acquaint the
reviewers with the nature and scope of the effort required. Mention all the efforts
from the initial system engineering through all the work required to finish the
robot and document the design. Often two dozen elements make up this list.

� Deliverables for the project For most engineering projects, this will be the list
of documents necessary to build the robot. Making this list in advance is a great
way to gauge the scope of the project and to make a checklist of deliverables you
can aim for. For each deliverable, estimate the delivery time when it will be fin-
ished (such as “week 7”). This will often be a list of 5 to 10 deliverables.

� Personnel resources This will be a spreadsheet of the people that will be needed
and the total amount of labor needed from each person. The PM should pad these
numbers to include the possibility that interruptions might occur. The spreadsheet
should look like the following example:

PERSONNEL WEEKS NEEDED

Hardware engineers 16

Software engineers 4

Test engineers 3

Total 23

� Expenses A spreadsheet should forecast any new purchases, rentals, outside
expenses, and so on. It’s used to budget and allocate cash flow during the project.
It should look like the following example:
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EXPENSE ITEM NOTES COST

Rent oscilloscope Three months @ $1,000 $ 3,000.00

CAD SW package Purchase $ 4,000.00

Outside consultant 2 MM (man month) @ $20,000 $40,000.00

Total $47,000.00

� Schedule Make a table estimating the dates of major events in the project,
including deliverables, major document reviews, and engineering milestones. This
is just a quick estimate based on the resources and the task at hand. Another
chance to estimate the schedule will occur when the project plan is submitted.

� Acceptance test plan How will we test the robot to be sure we are done?

PROJECT PLAN

Once the project proposal is submitted and approved, the PM should draft a project plan,
schedule the review meeting, circulate the plan a day in advance to the reviewers, and
preside over the review meeting.

Sometimes the project plan can be submitted and reviewed in parallel with the proj-
ect proposal. The plan should be written so it can be understood and used by someone
unacquainted with the project. The plan’s schedule can be drawn up using a standard
software package (such as Microsoft Project) in a Gantt bar chart format (about 10 to
20 bars). A portion of such a Gantt chart is shown in Figure 1-2. It’s large enough to
suffice for the plan at such an early stage in the project.

The plan should show milestones (with results that are demonstrable) at periodic
intervals. The plan should also have a title page, an introduction, and a couple of lines
explaining each task shown on the bar chart. The plan should also include a page or two
explaining the approach to various issues, such as the following:

� Defusing risk, such as how and when the technical and business risks will be mitigated
� Simulation, such as how shortcuts like off-the-shelf software can be used to get

moving
� Parallel execution, such as how engineers can work in parallel instead of on serial

tasks
� Make versus buy decisions
� The handling of suppliers and subcontractors
� The game plan for using the personnel

The plan need not be complex and should be drafted in two hours. Two to three total
pages may suffice and a partial verbal presentation is acceptable. The purpose of the
review is to allow others to suggest changes in the plan that would benefit the project.
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FIGURE 1-2 A Gantt chart, a standard project management tool
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As the project progresses through development, it’s strictly up to the PM as to how
to keep track of progress and tasks, as well as the degree of tracking.

FINDING PROJECT RESOURCES

Once the project proposal and project plans are approved, work with your manager to
schedule and obtain the resources you need. Due consideration should be given to pos-
sible interruptions that might occur during the course of the project. Generally, this can
be done in about 10 minutes in a private meeting with management.

Human factors come into play here. Some people like to work together; some don’t.
PMs will draft engineers they like and can rely on. Some engineers will want to work
for PMs they like and will want to avoid others they don’t work well with. Some peo-
ple will want to work just on the mechanics and others just on the motors or control sys-
tems of the robot. Remember, too, that people work differently. Some people can start
things but will never finish. Some will never start anything themselves, but will finish
things and get the project done. You will need both abilities on your team.

WRITING FUNCTIONAL SPECIFICATIONS

As an initial effort in the development project, the PM should have a functional spec
written, schedule the review meeting, circulate the plan a day in advance to the review-
ers, and preside over the review meeting. The functional spec is designed to fully
explain the functional requirements of the robot from a high-level standpoint. The spec
may take several days or longer to write and be 5 to 30 pages long.

A system engineer (SE), who can be appointed by the PM, typically writes the spec.
The SE can be anyone (including the PM) as long as he or she is performing the SE
function.

The major trick for the SE is to write requirements that best balance the needs of the
reality of development cycles, the schedule, and the budget. Often, no recovery is pos-
sible if a mistake is made in this part of the project. Get the spec right first and revise
them, as needed, along the way.

The spec should incorporate an outline appropriate for the hardware spec of the
robot. If the robot has software as part of the design, the spec should also incorporate
an outline appropriate for the software spec.
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In either event, a spec document should include the following:

� Description It should describe the system. To do this, just steal the proposal
description. Describe to a general audience what the project is and why it is being
done. In a few paragraphs, try to describe the entire robot. A simple graphic helps
greatly. This section is often a page or two long.

� Functional spec The spec should describe how the system should behave. It
should not describe how the system must be designed or built. The design itself is
up to the design engineers. All aspects of the robot’s behavior should be described.

� No repetition Do not repeat specifications in multiple sections of the document.
� References Cite all sources and specifications that are part of the project by ref-

erences. It is not necessary to repeat any part of a specification that is on file along
with the spec. Use three or so words to describe the cited section and then give the
section number for the cited specification.

� Technical suggestions The spec can suggest specific design engineering solu-
tions in situations where the technology is either difficult or the solution is already
known.

� Commonality Group common designs together. For example, if several differ-
ent user interfaces will exist, consider a central body of user interface code and
several different interfaces to it.

� Unravel the toughest problems first The easier ones will fall into place.
� Identify the technical risk points and elaborate on them This is very impor-

tant since the risk items generally have the greatest chance of derailing the proj-
ect. A few words of advice: Get rid of the risk items early in the project. In any
robot project, a few risk items can bust your project wide open. They might
involve the delivery of a prime component, they might involve untested technol-
ogy, or they might involve personnel problems. Whatever is the case, make a plan
to handle the risky aspects of the project first and foremost. Once they are out of
the way, you can proceed with much more assurance and predictability.

WRITING HIGH-LEVEL DESIGN (HLD) DOCS

The design engineers have the responsibility of writing a high-level design (HLD) doc
for the robot. However, it can be skipped at the discretion of the PM. The HLD is typ-
ically between 10 and 20 pages. The PM can schedule the HLD review, distribute the
HLD to reviewers a day ahead of time, and preside over the HLD review meeting. The
HLD is a technical plan showing the way the spec requirements will be implemented in
the actual design. It should serve as the blueprint for the successful implementation of
the final design and the HLD should make it clear how the design will be accomplished.
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The following might be included in the HLD for an embedded electronics system:

� Hardware considerations:
� Block diagrams of boards, major chips, and buses
� Documentation (PDF files) of major chipsets
� Power and cooling plans
� Connectors and all package breakouts
� Preliminary layout and plans for the board fabrication.
� Compliance issues

� Software considerations:
� Block diagram of major software modules
� Performance estimates
� Major algorithms
� Interfaces to third-party software
� Stack issues
� Network issues
� Operating system issues
� License issues

� General issues:
� Reference specifications (files or URLs)
� Application notes
� Memory map
� Interrupt map

EXECUTING THE PLAN

Executing the plan and actually developing the robot are up to the PM and the engi-
neers, and these tasks take up the bulk of the time during the project. Now we’re up to
the point where we’ve got a mandate to execute the project and a reviewed spec. We’ve
got people on board and a green light to proceed. So now what? Here’s some words of
advice on various topics:

� Spec Get all parties to read the specification and the HLD. Listen to the senior
engineers (if there are any) about how to proceed. Don’t be afraid to move a cou-
ple of squares backward at this stage. If any senior engineer has significant ques-
tions about the spec or any part of the project as laid out, heed them well. The best
chance to make corrections occurs early in projects.

� Leadership Even if you’re the only person on the project, you need to consider
how you will lead the project as a PM. Leadership is especially important when
more people are involved. Many books have been written on the subject that you
might consult, ranging from classics like Sun Tzu’s classic book The Art of War
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and Machiavelli’s The Prince, to modern treatments like Herb Cohen’s You Can
Negotiate Anything and Scott Adams’s Dilbert: Random Acts of Management.
Things do change some, although I’ve run into many different leadership styles
during my career. Just realize that I’m about to try to compress centuries of learn-
ing and wisdom into a page or two of usable advice.

A PM should lay out, for all concerned, the following major elements needed to lead
a project:

� Vision
� Mission
� Strategy
� Tactics

The vision is a dream, a view of how the project will go and what life will be like
when the project is complete. It should serve to create an image in the mind’s eye for
each member of the project. The image must motivate them to act with a common pur-
pose and follow your lead.

The mission outlines the specific goals that your group will achieve during the proj-
ect. Most of these goals will be directly related to the specifications and project plans.
But it would be a mistake to limit your team to such goals when learning, accomplish-
ment, teamwork, and glory are to be attained. Plan for those, too. As the old sales maxim
goes, “sell the sizzle, not the steak.”

The strategies are the methods of positioning and approach by which the group can
achieve the individual goals in the mission. The group does not have to successfully
accomplish the strategies, just the goals. But if the group sticks to the strategies, the
goals are likely to be accomplished. The PM, with the help of the rest of the group, can
determine things such as

� How hard everyone will have to work
� How to work at the same time on tasks that might otherwise need to be done one

after the other
� When it’s worth taking specific risks
� Which goals are more important than others

Tactics are the smaller maneuvers used to accomplish the goals of the strategies. They
are somewhat different than strategies in that they can be more easily abandoned in
favor of a different tactic. Several different tactics can be used while following the same
strategy. The PM and the rest of the group can collectively set tactics such as

� Who works on what
� What order things are done in
� What the backup plans are if certain things don’t pan out
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The basic idea of the “vision, mission, strategy, tactic” thing boils down to this: Tell
your people what they can accomplish, fire them up, give them a strategy so they can
act together, and point them in a good direction so they can march off as an effective
force to accomplish the goals.

Consider the famous speech Shakespeare wrote in Henry V about the English
king’s bloody conquest of France (the play can be found at www.theplays.
org/henryV/). Kenneth Branagh played Henry V in the movie version (http://
us.imdb.com/Title?0097499) and he delivered a stirring rendition of the speech, fir-
ing up his outnumbered troops on the eve of battle as they grumbled and wished for
reinforcements.

The fewer men, the greater share of honour . . .
I pray thee, wish not one man more . . .
Rather proclaim . . . that he which hath no stomach to this fight,
Let him depart . . .
We would not die in that man’s company
That fears his fellowship to die with us.
This day is called the feast of Crispian.
He that shall live this day, and see old age,
Will yearly . . . strip his sleeve and show his scars.
And say “These wounds I had on Crispin’s day” . . .
This story shall the good man teach his son . . .
And gentlemen in England now a-bed
Shall think themselves accursed they were not here,
And hold their manhoods cheap whiles any speaks
That fought with us upon Saint Crispin’s day . . .
You know your places: God be with you all!
Henry V, Act IV, Scene iii (excerpted and edited)

I actually gave this speech once to a project team, although I admit I had to read it.
It was a gamble, but it was well received and had the desired effect. Notice that Henry
did not try to motivate his troops by saying they could win a battle. Instead, he told them
they had a great opportunity to gain glory and could tell their kids all about it. He
appealed to emotions like pride, love, and a sense of accomplishment.

A leadership speech should be given at the beginning of the project to the whole
team. It can be reiterated with individual team members when they need it. Further,
don’t forget that different things motivate different people, and individuals may need
different leadership guidance.

One last thing: Let the group name the robot. The engineers will have much more
personal stake in the project if they can name the robot themselves. It’s almost a prom-
ise to give birth to a being of sorts.
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PPP REPORT (WEEKLY)

For the project, the PM should submit a Progress, Problems, and Plans (PPP) weekly
report for several reasons. First, it’s a good record of your project. Second, you should
at least have advisors who can look over the report and make suggestions. Last of all,
it will light a fire under you since it’s embarrassing to file an empty report even if you’re
the only person who reads it.

You should observe a basic rule: Confess early and confess often. It’s much better to
air problems early than to keep them secret and let them fester. They almost never get
better left alone. Good management should reward PMs who turn themselves in because
they have significant problems inside their project. That way adjustments and correc-
tions can be made in a timely manner. Problems seldom get better when aged.

The weekly PPP report you write should have the format shown here:
PPP Report

Project Report: 8/15/02—Project XYZ
Progress (The most important things that happened during the week)

� ____________________________________
� ____________________________________

Problems (The most important problems that exist)

� _____________________________________
� _____________________________________

Plans (The main short-term plans to be executed soon)

� _____________________________________
� _____________________________________

PROJECT REVIEWS (SCHEDULED)

The PM should schedule regular project reviews with senior advisors and colleagues.
Some reviews are called for in the project schedule and checklist. Other reviews can be
scheduled for corrective action, discovery, and so on.
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PM’S PROJECT CHECKLIST

A PM should fill out the following checklist during the project. This is the best way to
keep track of the requirements that must be met during the project. The manager to
which you report will also be following this checklist. It’s your best tool to ensure that
your needs will be met so you can execute the project cleanly.

Robot’s name: _________________________________________________________
Manager: _____________________________________________________________
Start date: ___________
Targeted deliverable: ____________________________________________________

Dates:
Project proposal approval: ______
Project plan approval: ______
Project resources assigned: ______
Spec reviewed: ______
HLD reviewed: ______
PPP reports (enumerate dates): ______ ______ ______ ______ ______ ______
Design reviews (as scheduled): ______ ______ ______ ______ ______ ______
Acceptance test completion: ______
Project completion: ______

Conclusion
In summary, don’t overlook the fact that a project to build a robot must be properly man-
aged like any other. Project management is an art and a field of study in its own right.
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CONTROL SYSTEMS

This chapter covers the most complex topics in the book. Control systems can be very
ornate and difficult to build. They can be built using computers, linear electronics,
mechanical parts, biological parts, or just spit and sticks! But underlying all control sys-
tems is the queen of the sciences—mathematics. Given an understanding of the math,
we can tame any of these types of control systems. In the final analysis, they all behave
the same way, following the same math.

It would be heresy to some to suggest that control systems can be tamed with an under-
standing of just a few equations, but the fact is, the basic mathematical concepts of con-
trol systems can be greatly simplified and made accessible. If you learn the basics, you
can probably extrapolate to other cases using your instinct. That’s our goal in this chapter.

Control systems are everywhere and they come in all shapes and sizes:

� The average car has 35 computers in it now, running the engine, the brakes, the
radio, the radar, and so on.

� You are a control system of sorts. I can surely rely upon you to turn the page when
my words run off this page to the next. You are very predictable that way and you fol-
low the western standard of page turning, as does every school kid in the country.

2
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� Every toilet has a control mechanism for refilling the tank with the appropriate
amount of water, and reliability is paramount.

� The average toaster is great at browning bread in a repeatable manner.
� You can probably walk through a completely dark room, touch a few well-known

milestones, reach out with your hand, and find the light switch almost every time.

We all take the existence of such control systems for granted. Let’s assume we’ve
already built a large, strong robot body with the power, agility, strength, speed, and dex-
terity we believe it needs. Now comes the hard part. Here’s a dream list of intangibles
that might be really nice to have in the robot:

� Intelligence
� Wisdom
� Compassion
� Love
� Perception
� Communication skills

That’s a long list, with many critical characteristics (that a good “person” should
have) left off. How many of these things should we try to cram into the robot?

Carl Sagan, the noted astronomer and author, once commented on the intellectual
horsepower inherent in the control system of an interplanetary probe. He said the
probe’s computer was roughly the intellectual equal of a cricket. To tell the truth, I think
he sold crickets short (see Figure 2-1).

So here’s a word of caution. If you hope to build a machine with wisdom and com-
passion, you have a huge, impossible task before you. Here are some of the profound
problems you’ll have to wrestle with. Forgive me for not explaining myself with all of
these statements. I’d encourage you to consider each for yourself and delve into the rea-
sons for these problems and their implications.
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� The truth is, the human brain is capable of massive calculations, far more than the
average huge computer. If you doubt this, consider the game of chess, in which
humans have been beating computers for years. Computers designed for chess are
only now catching up. But remember, chess is a game that a computer can at least
digest easily, so the designers can optimize the computations. Most of life is much
more complex than chess.

� At the risk of throwing cold water on the dreams of creative young scientists, most
acts of human interaction will probably never even be defined, much less equaled
by machine. Wisdom, love, and compassion spring to mind.

� The human mind has profound defects, defects that are manifest in the daily news
broadcast. One could argue from an evolutionary standpoint that human defects
such as those engendering greed and war are inevitable. Further, it could be argued
these defects still benefit the human species and help to propagate it. It might be
controversial to say so, but if we were to breed such traits out of humans, the
insects would probably supplant us sooner than we might expect. As a side exer-
cise, I ask you this. If you could press a button and make aggression, greed, envy,
and other such vices instantly disappear from the human race, would you really
press the button? If you could choose such traits for your robot, would you build
them in?

� Humans cannot know their own minds, much less duplicate them perfectly. It
won’t stop us from trying though.
� As a counterargument to my previous assertion, it must be stated that humans

are having an increasingly difficult time distinguishing between human and
computer “personalities.” Alan M. Turing, the British mathematician famous
for his code-breaking work in World War II, proposed a simple experiment that
has turned into a periodic contest. The experiment, known as the Turing Test,
challenges a human interrogator to hold a conversation with two unseen enti-
ties, one a computer and one a human. The interrogator must discover which is
which. Winners are awarded the Loebner Prize. Visit the Loebner Prize web site
for some interesting discussion and surprising results (www.loebner.net/Prizef/
loebner-prize.html). More on Turing can be found at http://cogsci.ucsd.edu/
�asaygin/tt/ttest.html#intro.

� As another example of problems that cannot, and perhaps should not, be solved,
consider whether your robot should be male, female, or genderless. We leave
this exercise to the student body and recommend the debate be taken outside
the classroom. A variant of the Turing Test, by the way, asks the interrogator to
differentiate between a man and a woman. What questions would you ask?

� Humans cannot communicate with each other perfectly. A person can only attempt
to utter the right words that will instill the proper notion of his or her idea into
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another person’s mind. To communicate verbally, we form our thoughts, utter
them, watch the reaction in the other person, and alter our statements based on his
or her reaction. All these actions cannot be perfectly executed and always have
unintended results. On this point, read Ronald David Laing’s book The Politics of
Experience.

A city with a large convention center suffered a flood inundating the first floor of the
center. When firemen showed up at the convention center during the flood, they were
amazed to hear rushing water every 45 seconds. Water gushed down the escalator from
the second floor, stopped, and then repeated over and over. It turns out somebody had
designed a smart feature into the elevator system. Since there were only two floors, why
even bother putting in floor buttons? Just sense the motion of people coming into the
elevator, and take them to the other floor. So the elevator was patiently going to the
ground floor, opening up to allow the floodwater to come in, and bringing it to the sec-
ond floor. Sensing a great deal of traffic, the elevator returned to the ground floor for
more “people.” All the while, the control system was perfectly content with its actions.

So my advice about the control system is this. Keep it simple, unless you’re just
experimenting and fully prepared to fail.

Let’s take a step back and look at your original goals. If you’ve written specifications
for the robot (and kept them simple), you have a limited list of tasks that the robot must
perform. All you have to do is build a robot that can execute the tasks on its plate.

Where do we start designing a robot so it can do such things? For starters, we can
look to nature for analogous designs. Nature abounds with control systems worthy of
emulation. However, our thoughts are commonly rife with anthropomorphic visions of
robots. The first image that springs to mind is of a robot with a head, two eyes, two ears,
a mouth, two arms, and a torso. Are we being led astray by our own instincts?

Distributed Control Systems
Although many arguments have been made for the existence of a distributed intelligence
within the human body, clearly a central control system exists: the brain. Is a central con-
trol system what we really want? This is worth considering before choosing an architecture.

Consider a school of herring. They swim in giant schools, flashing silvery in the deep
blue ocean light. See http://www.actwin.com/fish/marine-pics/anchovie.mpg. As some
tuna come in to attack, the school instantly swerves, divides, and coalesces as if by
magic. It’s a viable survival tactic for the herring. How do they pull off such a feat? Well,
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each individual herring simply watches his four immediate neighbors and reacts to their
position, speed, and movement. The net result, observed at the school level, is dramatic
and effective. Thousands of tiny brains act almost as one, and the tuna are partially frus-
trated. With luck, they go off to bother the shrimp.

The herring school is using a “distributed” control system. The school is governed
by the collective will and common actions of the individual fish. Consider some of the
advantages of a distributed control system:

� Cheapness Individual control systems elements are simpler and cheaper. In this
example, we’d only have to design something simple like a herring and then repli-
cate it thousands of times (gaining economies of scale).

� Reliable If the system is designed to survive the failure of portions of the sys-
tem, a few failures will not bring it down. Surely, not all the herring escape the
tuna. The school simply changes shape to heal up the hole where the eaten her-
ring once was, and life goes on.

A distributed control system does have some disadvantages:

� Communication Sometimes it’s hard to communicate everything between indi-
vidual control elements. A herring at the far side of the school doesn’t know a tuna
is coming until his neighbor signals such. The panic signal spreads through the
school like a wave, but it might be too late. This form of knowledge truly is power,
and a matter of life and death.

� Horsepower The individual elements within a distributed control system gen-
erally are not powerful in and of themselves. Although the collective herring
school solves the tuna problem as well as any human or computer might, the indi-
vidual herring could not match a human at math or reasoning. Distributed control
systems are often designed to solve specific problems and are not as good at field-
ing general-purpose problems. If you use a distributed control system, be very
careful that you know all the problems that it must face. If the specifications
change, your design might flounder!

If you’d like to explore a distributed model for robot control, here are some URLs
with source software and links. Just beware; you could easily spend weeks playing with
these models:

� http://www.red3d.com/cwr/boids/

The following URLs consider general-purpose distributed control systems:

� www-db.stanford.edu/�burback/dadl/
� www-db.stanford.edu/�burback/dadl/node87.html
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One of the purposes of this book is to point out fields of endeavor that might lead
you to a life-long career choice. If, for some odd reason, you’re hooked on herring, go
to Iceland (http://siglo.is/herring/en/silver.shtml)!

Central Control Systems
Let’s take a look at centralized control systems. Certainly, an understanding of a single
control system is vital for an understanding of a distributed control system. I’m going
to leave it as an exercise to extrapolate these teachings to any work done on a distrib-
uted control system.

Most control systems are built around the same basic control structures. We’ll look
at a few different structures, but the point is their behavior can be described by the same
math. We can discover for ourselves the sorts of characteristics that these control sys-
tems have by observing a readily available control system. The control system I’ve cho-
sen to demonstrate is, right now, at the tip of your finger. We are shortly going to do
some experiments while you are reading.

Open-Loop Control
Most robot control systems have some sort of input signal and output signal. In between,
the control system responds to the input signal and changes the output signal accord-
ingly. The following is a simple diagram showing an open-loop control system (see
Figure 2-2).

The input signal is generally a low-level control signal. Two examples of an input sig-
nal might be the signal from the power button on a TV remote or the linear voltage from
a rotating dimmer switch. Generally, in a control system, the actuator amplifies and
transforms the input signal. When a person presses the power button on the TV remote,
the remote generates an infrared signal that the TV interprets to close a relay and give
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FIGURE 2-2 An open-loop control system
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power to the TV circuits. Actually, two open-loop control systems are at work. They are
concatenated and operate as a single open-loop control system (see Figure 2-3).

In open-loop control systems, the information tends to flow only one way. For exam-
ple, the control system inside the remote never finds out if the TV goes on or not.
Furthermore, the power button on the remote never indicates if the infrared beam was
sent out or not. If your finger is over the optical opening, nothing happens at all and the
remote never knows the TV has not gone on.

Let’s run an experiment illustrating an open-loop control system within your body.
Glance over to your right and locate an object in the room. Remember where it is and
then look back here to the book. Now close your eyes, point to the object, trying to put
your finger right on the object in your field of vision. Open your eyes, and see how close
you came (see Figure 2-4).

You’ll notice that you never really get it right with your eyes closed. When you open
your eyes, you can see your finger is a little off. The error will never go away and is
called the steady state error. It’s an error that will persist long after the control system
has settled on the final output and will make no further corrections. We’ll see steady
state error as a term in the equations that we develop later. All control systems have this
error. It’s an important parameter because when you are designing a control system, you
must keep the steady state error below acceptable bounds.

You can perform another experiment if you have a dimmer in your home. Wait until
dark and turn off the dimmer, making the room dark. Close your eyes and then turn on
the dimmer to where you think the minimum acceptable reading light level is.
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FIGURE 2-3 Concatenated open-loop control systems
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FIGURE 2-4 The open-loop control error is large with eyes closed.
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Open your eyes and see how well you did. Likely as not, you won’t be satisfied with
the light level because the steady state error will be too large. You will have to make a
correction in the light intensity to be comfortable reading under the light.

The corrections you have made in these two experiments by finally using your eyes
illustrates an important concept. An open-loop control system can be improved if it is
told how well its output matches the input requirements. With that somewhat broad
statement, we’ll introduce another type of control system.

Closed-Loop Control
Closed-loop control systems are also referred to as feedback control systems, because
information flows backwards at some point within the control system. Generally, this
reverse information flows from the output of the control system backward toward the
input. The information that flows backwards allows the control system to make correc-
tions in its output. Figure 2-5 is a generalized diagram of a simple closed-loop control
system.

Information flows backwards in the system, from the output signal to somewhere
near the input. I’ve labelled this reverse information flow “feedback.” In this simple ver-
sion of a close-loop control system, the output signal is sent back and directly compared
to the requirements set by the input signal. The circle shows an arithmetic computation
(subtraction). If the output does not directly match the input, the actuator will receive a
nonzero signal at its input and provide corrections at the output so its input returns to
zero. In practice, many different kinds of closed-loop control systems exist, and, as
such, one could make many variations to this diagram.

Many control systems do not have outputs that are directly comparable to the inputs;
the circle in Figure 2-5 must be much more complex than a simple subtraction element.
Often, the output signal must be transformed before it can be compared to the input sig-
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FIGURE 2-5 Closed-loop control systems use feedback.
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nal. Such transformations may take the form of scaling (to a different size) or conver-
sion from one signal type to another (like from light values to a voltage signal).

Often, the comparison within the circular symbol is not a simple subtraction.
Sometimes it’s a comparison (bigger or smaller) and the output of the circle represents
either off or on. Thermostats work this way, for example.

Clearly, the system looks like a closed loop. Often, such a system is also referred to
as a closed-loop feedback system. All these terms generally mean the same thing.

Let’s run the first experiment over again a different way as a closed-loop control sys-
tem. Now close your eyes and point again to the object (trying to put your finger right
on the object in your field of vision). Open your eyes again, and see how close you
came. You still didn’t get it right with your eyes closed, but now with your eyes open,
you’ve introducted feedback into the system. With your eyes open, it’s easy for you to
make the correction and get your finger right over the object in your field of vision (see
Figure 2-6).

Notice, the steady state error is now much less. We think the error is actually zero,
but we’ll see shortly that this is rarely the case. Certainly, closed loop control is a bet-
ter solution in terms of accuracy, but it comes at the cost of providing extra control ele-
ments (in this case, vision).

STEADY STATE ERROR

Now that we’ve identified a parameter of interest, let’s look at the math. We can assign
arbitrary variables to represent the signals and control system elements that we have
been talking about (see Figure 2-7).

Looking at the circular arithmetic element (subtraction),

b � a � d

The actuator is said to have a gain of C. This gain can be immense and the system will
still work. As an example, if a very tiny positive signal takes place at b, then signal d
can be extremely large and positive. Similarly, if a very tiny negative signal is issued at

CONTROL SYSTEMS 27

FIGURE 2-6 The closed-loop control error is smaller with eyes open.
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b, then signal d can be extremely large and negative. The system is designed to func-
tion with signal b being very small, nearly zero. The actuator usually provides the horse-
power and amplification to drive signal d. To be precise,

d � C � b

Substituting for b in the previous equation, we get

Finally, we have the relationship between the input a and the output d:

This equation predicts that the steady state error of this sort of closed-loop control
system is governed by C. The output d will be off by the ratio of C/(1 � C). This fac-
tor is also termed the steady state error coefficient. Note that it cannot be zero; a steady
state error always exists. Note also that the larger the gain, C, of the actuator, the smaller
the steady state error. As C tends toward infinity, the steady state error tends toward
zero. What practical things can we do with this math?

� Expect the closed-loop control system to exhibit some steady state error. Don’t be
surprised if the system does not exhibit a perfect output. It is bound to have some
error.

� Recognize that the steady state error is very likely to depend upon the gain of the
actuator. Use the steady state error coefficient to estimate what that error will be
in advance and design the robot to allow for an error of that size. If the system has
too much steady state error, consider revising the actuator gain to correct it.

d �  a �  1C>1 �  C 2

d �  11 �  C 2 �  C �  a

d �  C �  d �  C �  a

d �  C �  a �  C �  d

d � C � 1a � d 2
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FIGURE 2-7 A closed-loop system with an actuator and error signal b
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� We might be led to believe that making the actuator gain as large as possible is
desireable. Just be aware that increasing the gain of the actuator adds expense and
will adversely affect the dynamic (nonsteady state) behavior of the control system
as we will see later. In the worst case, a large actuator gain can make the system
unstable and lead to failures. Whenever altering the gain, remember to reevaluate
and retest the dynamic performance of the control system.

Realize that these equations model a general-purpose closed-loop control system. If
the control system is meant to control the robot’s position, then the variables a, b, and
d are measured in distance. If the control system is meant to control the robot’s speed,
the variables are measured in speed. If the control system is meant to control the robot’s
acceleration, the variables are measured in acceleration. The fundamentals of the math
are still the same; only the units change. We can use the equations herein to control any
of the aforementioned systems without further investigation.

We leave it up to the reader to investigate the mathematics of calculus that hold that
acceleration is the derivative of velocity, and velocity is the derivative of position.
Suffice it to say that positive acceleration builds up speed, negative acceleration (brak-
ing or accelerating in reverse) decreases speed, positive speed accumulates distance
(position), and negative speed (moving backwards) decreases distance (position).

DYNAMIC RESPONSE

When a control system sees a changing input, it generally changes the output. A stan-
dard test of a control system is to give it what’s called a step input. For a robot, such an
input might call for it to move from its present postion to a new position and stop there.
The classic input used to test a control system is a step input and is of the following
form (see Figure 2-8).
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FIGURE 2-8 The classic step input function
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An ideal control system would follow the step input function and produce the same
step output function. The robot would instantly move to the new position and stop on a
dime with no steady state error. We’ve already seen how the robot will have a steady state
error (not fully reaching the desired final position). The truth is, the robot cannot move
instantly and it cannot stop on a dime. The control system in the robot sees the step input,
delays a bit for reaction time, finally starts moving, and tries to stop near the final posi-
tion. The response is going to be imperfect no matter which way we slice the pie.

So before we look at how control systems really behave, we’re going to have to stop
and do some math. After that, we’ll have to tools to see the following:

� How the design of the control system determines how the robot will react
� How to characterize the robot’s performance in a few parameters
� How to know which design parameters to alter based on the robot’s performance
� How to get optimum performance from the robot

To get the tools we need to analyze and manipulate the performance of the robot,
we’re going to pick a mathematical model for the robot and derive some of the equa-
tions. We’re going to skip the easier models of robot behavior and go straight to a
slightly more complex case. We are going to use math and physics that might be beyond
the casual reader’s abilities, but we will return to a usable, intuitive model of what’s
going on. We will start with physics, calculus, Laplace transforms, and algebra to arrive
at usable results. Once we have that math in front of us, we will explore the tools it
affords us.

First, we need a way to look at the parts of the robot and assign numbers to the move-
ments we observe. This can be done in a couple of ways:

� Energy evaluation One way to analyze dynamic movement is by looking at
everything in terms of energy: where it’s stored and how it’s used. We are not going
to use this technique any further in this book, but it’s worth mentioning the alter-
nate technique. Energy is stored in multiple places in a robot, certainly in the bat-
teries, but it is also temporarily stored in other places
� Springs (potential energy) A good mathematical description of springs will

be provided a little further along in this book. As a spring is compressed, the
energy E in the spring is

where x is the compression distance. Note this equation only works for smaller
values of x because an overly compressed spring becomes nonlinear and runs
out of springiness. K is the spring constant; a bigger, stronger spring has a
larger K value.

E �  0.5 �  K �  x2
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� Moving mass (kinetic energy) The energy in a moving mass is

where m is the mass, which will be described later in the book. v is the velocity.
Note that a moving mass might not just be moving linearly. It might also be
rotating. As such, you can model the energy of both motions separately. You can
use the center of gravity of the mass and see how fast that is moving linearly.
Then you can add the energy of rotation about that center of mass (as you find
it).

� Mass at heights (potential energy) When a mass is at a height, the potential
energy it has is given by the equation

where M is its mass. g is the acceleration constant of gravity (32 ft/sec2). h is
the height the mass might fall. A nice treatment of potential and kinetic energy
can be found at www.dcate.net/coasters/pe.html.

� Force evaluation Instead of looking at energy, we’re going to use the technique
of looking at everything in terms of force. We need only to characterize the forces
within the system as they act together. In this way, we can predict what the pieces
of the robot will do. Here are some of the places force is stored in a robot:
� Motor force Most motors will generate a time-varying force when energy is

applied. The force might be rotational or linear. To keep matters simple, we’ll
be looking at linear force, such as might be applied by a solenoid, which is an
electromagnet with a moving metal core, much like Figure 2-23.

� Moving mass force (kinetic force) Newton created the equation for force
acting on a mass (or mass creating a force):

where m is the mass and A is the acceleration (or deceleration). When gravity
is the force providing the acceleration, A � g and thus F � m � g, the force
needed to hold up a mass m.

� Spring force A spring with a spring constant of K will have a force

where x is the compression (or elongation) of the spring.
� Friction force Friction is a force that is engendered by velocity through a

friction medium. For example, a motor, when the power is turned off, will cause
the vehicle to coast to a stop because its rotor glides over the bearings and the

F �  K �  x

F �  m �  A

E �  m �  g �  h

E �  0.5 �  m �  v2
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grease in the bearings still has friction. The decrease in speed is somewhat lin-
ear in time. Friction is proportional to velocity and has a force of

where B is the coefficient of friction, and v is the velocity. This makes intuitive
sense. When you rub your hands together, you have to work harder to rub faster.
The friction grows hotter the faster you go. The force increases and the energy
mounts up faster.

Friction comes in disguised forms. We often think of friction as something
dragging over a surface. Often, elements will have their own internal friction.
A motor will coast to a stop by itself. Springs will heat up as they bounce and
will slowly stop bouncing by themselves. If the coefficient of friction is not
specified inside a system, you can often determine it empirically. The quick
way to do so is to compute the instantaneous deceleration of a mass and com-
pare the two forces:
F � m � a for the mass
F � B � v for the friction, so
B � m � a/v
This technique works for rotational, linear, or spring-type movements.

So now we have to pick a mechanical model of the robot in order to make a mathe-
matical model for it. We will pick an arbitrary model that will probably be different than
our robot’s actual mechanics. However, once we learn how to analyze and manipulate
this arbitrary model, it will be second nature for us to extend our knowledge to other
models. Most systems, even unusual nonlinear ones with spasmodic motions, can be
treated similarly to the model we will study. The math is close to the same. We are look-
ing at what is called a second-order system, so called because the forces are based upon
three different representations of positions (as represented in terms of calculus):

� Position The position, x, of a mass. For springs, the force is proportional to x.
� Velocity v, the rate of change of position, x, of a mass, the first derivative of x.

In calculus, this is called the first derivative of x with respect to time (v � dx/dt).
In everyday terms, we think of it as miles per hour. The force of friction is pro-
portional to dx/dt.

� Acceleration a is the rate of change of velocity, the first derivative of v, the sec-
ond derivative of position x. In calculus, a � dv/dt or, when written in terms of x,
a � d2x/dt2.

In a simple system where the acceleration is a constant (such as gravity acting on a
falling object near the surface of the earth):

F �  B �  v
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� v � a � t
� x � 0.5 � a � t2

The simplest second-order mechanical model is a weight hanging from a spring.
Since almost everybody has performed this experiment as a kid, let’s think back to how
this system behaves. We’re going to diagram the behaviors, one at a time, and enumer-
ate the behaviors so we can explain them later once we have the equations:

1. When you displace the weight (mass) vertically and let it go, it will bounce up
and down at a nice constant frequency. If the displacement keeps the spring in
its linear region (without compressing it or stretching it too much), the motion
of the mass will be like a sine wave. To try this, hang a weight from a rubber-
band until the rubberband is half stretched out. Pull the weight down a little and
let it go. It will bounce up and down with a fairly fixed frequency and look like
the sine wave in Figure 2-9. This illustrates the resonant frequency of the sec-
ond-order system, which we will later call v. The frequency v is measured in
radians per second where there are 2�� radians in a single cycle.

2. We know that if we put a bigger weight on the spring, the weight will bounce up
and down slower than the lighter weight does. To try this, hang two weights from
the rubberband. This illustrates how v decreases with the mass m (see
Figure 2-10).
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FIGURE 2-9 The movement of a weight on a spring
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FIGURE 2-10 The movement of a heavier weight on a spring
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FIGURE 2-11 The movement of a weight on a heavier (more powerful) spring
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3. We know that a stronger spring will make the weight bounce up and down faster
than the weaker spring. To try this, put a second rubberband right next to the
first one so that they act in unison and use the original single weight. This illus-
trates how v increases with the spring constant K (see Figure 2-11).
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4. We know that the bouncing weight will eventually settle down and stop bounc-
ing if we stop moving the spring. This illustrates the damping action of friction.
In this particular case, the friction is inside the spring itself (and in the air). The
rubberband heats up as the friction inside the rubberband uses up the energy that
was in the moving weight. Later we’ll call the damping coefficient d. Clearly, if
you try this experiment underwater instead of in the air, the friction would be
much larger and the system would settle down much faster. (see Figure 2-12).

5. We know that, as we move the top of the rubberband up (like our step input dia-
grammed earlier), the weight will shoot higher than the desired final position
and will eventually settle down to a higher level. We call this excess movement
of the weight the overshoot (see Figure 2-13).

Now it’s time to diagram our model mechanical system. Instead of a hanging weight,
we’re going to eliminate the force of gravity and use a horizontal system where the
weight rests on a slippery surface. If you want to take this horizontal system and extrap-
olate it to a vertical system, just extend the spring to counteract the force of gravity’s
acceleration on the mass. For our computations, the horizontal model takes this term
out of the math since gravity does not stretch the spring (see Figure 2-14).

The ground reference is, in this case, the earth. It’s not supposed to move under you
(those of you in California take note). In reality, as you walk one way, the earth rotates
the opposite way. But since it’s so much larger than you, the motion is imperceptible. I
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FIGURE 2-12 The movement of a weight on a spring with damping friction
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FIGURE 2-13 This bouncing weight overshoots by 50 percent
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FIGURE 2-14 A second-order mechanical system with step input, spring,
weight, and friction

 
Force 
Step  input

Spring 
F = K *  x 

Mass 
F = m * d2x/dt2

Friction 
F = B * dx/dt 

leave it up to the reader to calculate the rotation of the earth that would occur if every-
body on Earth starting walking in the same direction at once. For now, let’s consider the
ground stable.

We’re going to delve into physics and math here without a serious attempt to explain
how things work. Take heart that we will return to more familiar ground shortly and that
the results will be intuitive and usable.
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The force in a closed loop of mechanical elements adds up to zero. From this, we get
the “characteristic” differential equation of this mechanical system:

This says the spring force acts trying to accelerate the mass and overcome friction.
In calculus, many ways exist for solving a differential equation like this. The mathe-

matics get a bit difficult, but French mathematician Laplace provided a shortcut in the
form of his Laplace transforms. They basically eliminate the requirement for integral
calculus and reduce the problem to algebra and searching some tables. We will perform
a Laplace transform on our differential equation, do some algebra, and then use the
tables to perform an invervse Laplace transform to get back our real-world answer (see
Figure 2-15).

First, we transform our differential equation using the methods of Laplace. Substitute
the variable s to stand for a single differentiation. As such, the differential equation
becomes

We’re going to use algebra to find the roots of this quadratic equation. Remember the
old formula for finding the roots of the quadratic equation? I bet you thought you’d
never use it! Stay awake in school! The following restates the quadratic equation and

M �  s 2 �  B �  s �  K �  0

m �  d2x>dt2 �  B �  dx>dt �  K �  x �  0
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FIGURE 2-15 Pierre-Simon Laplace
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shows the two roots. Notice that the two roots are shown with a �- notation in the fol-
lowing sections:

� a � x2 � b � x � c � 0
� x � (�b �� (b2 � 4 � a � c)1⁄

2)/2 � a

We are going to use the quadratic equation to solve our characteristic equation. First,
we are going to cheat a little, because we already know the answer. We’re going to
change some of the constants in the characteristic equation before solving for the roots.
This allows us to easily see the final result. Here are the three changes we make:

� Divide by K so

changes to

� Substitute 1/v2 for m/K. Take a look at the second and third behaviors (Figures 2-
10 and 2-11) of the bouncing weight we showed above, and you’ll start to appre-
ciate this substitution.

� Substitute 2 � d/v for B/K. The damping coefficient d, integral to slowing down
the system over time, is directly related to the coefficient of friction, as we might
expect.

The equation changes with the substitution from

to

Using the quadratic equation, the two roots are

Take out the factors of 2:

s �  1 � 1d>v 2 � �  1 1d>v 2 2 �  11>v2 2 21>2 2> 11>v2 2

s �  1�12 �  d>v 2 ��  1 12 �  d>v 22 �  4 �  11>v2 2 �  1 21>2 2>2 �  11>v2 2

11>v2 2 �  s2 �  12 �  d>v 2 �  s �  1 �  0

m>K �  s2 �  B>K �  s �  1 �  0

m>K �  s2 �  B>K �  s �  1 �  0

m �  s2 �  B �  s �  K �  0
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Multiplying the top and bottom by v2 brings us to the two roots of the quadratic:

Now we perform the inverse Laplace transform using the tables (which are not repli-
cated herein). For the cases where d is less than 1, we have what’s called an under-
damped system that responds much like the overshoot chart. In this case, the Laplace
tables show the basic solution to be of the form

where c1 and c2 are to be determined by initial conditions. To find the initial condi-
tions, we look at the equations for the rest state of x and dx/dt. This gives us two equa-
tions in two unknowns and leads to the final solution, which is

This is the final solution and was used to generate the charts earlier. This equation
represents a unit step function starting from x � 0 at time 0 and settling at the value of
x � 1 after the transients settle out. This can be seen in the behavior of the individual
functions in the solution. The exponential function e(-d� v� t) dies off over time as t goes
to infinity. The larger the damping, the faster it does so. The function

oscillates and provides the ringing.

Designing the Control System
Well, we’ve come through the math gauntlet and come up with a closed solution of how
the model system behaves. Now, how do we make this useable? Remember our goals;
we are going to answer the following:

� How the design of the control system determines how the robot will react
� How to characterize the robot’s performance and which design parameters to alter
� How to alter the robot’s design parameters
� How to get optimum performance from the robot

Let’s tackle the first goal.

sin 1v �  11 �  d2 20.5 �  t �  . . . 2

x1t 2 � 1 � 1e 1�d � v � t2 2 sin 1v �  11 �  d2 20.5 �  t �  acos 1d 2 2> 11 �  d2 2�  0.5

x1t 2 �  1 �  c1 �  1e 1�d � v � t2 2 �  sin 1v �  11 �  d2 20.5 �  t �  c2 2

s �  � 1d>v 2 � �  1 1d2 �  1 21>2 
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HOW THE DESIGN OF THE CONTROL SYSTEM
DETERMINES HOW THE ROBOT WILL REACT

We have made a model of a second-order system and have the closed equation describ-
ing how the model behaves. If we know m, K, and B, we can graph the theoretical
behavior of the system. Here’s a step-by-step method of doing just that:

1. If you have values for m, K, and B, skip ahead to step 2.
a. Mass To measure the mass m, just weigh it in kilograms and divide by the

gravitational acceleration of 9.8 m/sec2. It should be mentioned here that
kilograms is not a measure of weight. The actual unit of weight in the metric
system is the Newton! It is not correct to report weight in kilograms. You
should be aware that mass is not the same thing as weight. Mass is a measure
of the amount of “stuff ” in the object. Weight is a force and is a measure of
the force exerted by the mass in the presence of the gravity created by another
mass like the earth. Mass in orbit is weightless, yet retains its mass. Mass on
Earth becomes weight because it’s acted upon by the acceleration of gravity
(F � m � g). Here’s a web site about this matter:http://feenix.metronet.com/
�gavin/physics/wgt_mass.html.
This brings up an important point. The calculations for the model’s second-
order system are partially dependent upon gravity. The robot might not work
the same way in orbit. The friction we diagrammed in the model’s mechan-
ical second-order system depends on the friction of the mass resting on a sur-
face. Without gravity, there will be no such frictional coefficient B to speak
of. You can introduce other friction elements into your robot design that
would work in orbit, such as a piston with a viscuous fluid within it (like a
shock absorber).

b. Spring constant To measure the spring constant K, hang a known weight
from the spring without stretching it too far. The ratio of the displacement of
the spring to the weight will give you K using the formula

where g � 9.8 m/sec2, the acceleration of gravity. The example given at the
web site www.iit.edu/�smile/ph9013.html cites a 250-gram weight sus-
pended from the spring.

K �  2.4 newtons>displacement

K �  12.4 kgm>sec2 2>displacement

250 grams �  9.8 m>sec2 �  K �  displacement

Solving m �  g �  K �  displacement

m �  g �  K �  displacement

40 CHAPTER TWO

02_200256_CH02/Bergren  4/17/03  11:23 AM  Page 40



Hang the 250-gram weight, measure the displacement in meters, and then
compute K in newtons per meter.

c. Coefficient of friction
ii. First, you must know how friction behaves, since it can get complex. The

friction is greater in our model when the weight is not moving. This is
termed static friction. Once the mass starts to move, the friction decreases
to a lower level as long as the mass continues to move. Think of friction
as a series of microscopic speed bumps. They don’t seem as bumpy if the
weight is moving faster, but if the weight slows to a crawl, the speed
bumps are painful to go over. We’ve all experienced static friction before.
Often, it takes an extra heave-ho to start pushing something, and a bit less
effort to keep it going. Just be aware that system behavior won’t precisely
follow the model if B is greater when the mass is at rest. A couple of web
sites about friction are located at www.iit.edu/�smile/ph9311.html and
www.iit.edu/�smile/ph9104.html.

ii. The coefficient of friction B can be measured in two ways:
Force conversion: Take a spring with a known spring constant K and
use it to pull the weight at a constant velocity dx/dt across the friction
surface. The force exerted by the spring is K � x, where x is the
displacement of the spring. At a constant velocity, the spring force
equals the force of friction, which is B � dx/dt.

Derivation: We’ll see later how, knowing K and m, we can derive B by
observing the system behavior. This would prove useful when changes
have to be made to either of the three parameters to change system
behavior.

2. Let’s assume we know B, K, and m. We can plug these numbers into the equa-
tion for x(t) and plot the predicted results. The robot should follow the model’s
behavior if the model truly does mimic the design of the robot.

Let’s tackle the second goal.

HOW TO CHARACTERIZE THE ROBOT’S PERFORMANCE
AND KNOW WHICH DESIGN PARAMETERS TO ALTER

Figures 2-12, 2-13, 2-16, and 2-17 were made using Excel spreadsheets. They show the
predicted behavior of the model’s second-order system. The figures were made specif-
ically to show how we can guide the design and make the robot behave the way we want
it to. This, of course, is the third goal, so we’ll postpone that part of the discussion.

B �  K �  x> 1dx>dt 2
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Every individual curve in the figures represents the predicted behavior of a second-
order control system given specific design parameters that are affected by B, K, and m.
Every curve on the figures is normalized and shows a control system that will eventu-
ally settle to the value of 1. Because of the design differences (reflected in each curve),
they behave differently. The key for us is to learn how these curves behave and how to
control them.

The first thing to notice about the two figures is the predictability of the curves. In
Figure 2-16, marked Varying Damping Only, we can see that all the curves have about
the same frequency. The center horizontal line represents the final value of 1. All the
curves cross the center line at about the same times: 2.5 seconds, 4 seconds, 6 seconds.
This is because each of those second-order systems was designed to have the same fre-
quency. These curves show the effect of changing the damping.

In Figure 2-17, marked Varying Frequency Only, we can see that all the curves have
about the same overshoot and undershoot. They all rise to a value of 1.5, drop to a value
of 0.75, and so on. This is because each of those second-order systems was designed to
have the same damping. These curves show the effect of changing the frequency.

We will examine the characteristics of the curves on the graph and discuss which
characteristics are of immediate interest. Robot designers consider the following:
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FIGURE 2-16 The second-order system responds differently as the damping
is varied.
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� Response time Take a look at Figure 2-17 entitled Varying Frequency Only. It
was made holding the damping parameter d constant and varying the frequency v
(we’ll get into how to do that soon). The point is, the curves rise toward the final
value of 1 at varying speeds. A few ways are available for measuring the response
time, including
� Time from 0 to first crossing of 1
� Time from 0 to first peak overshoot (the maximum value)

The system has a different response time for different values of damping. If we
look at the time from 0 to the first crossing, the four curves vary in rise time from
3/4 seconds to almost 4 seconds. These four curves vary in frequency from 2.5 to
0.5 radians per second. A circle has 2p radians. Frequency is related to radians in
the following way:

where F is in Hertz (cycles per second), v is in radians per second, and p is
3.14159 . . . .

F �  2 �  p �  v

CONTROL SYSTEMS 43

FIGURE 2-17 The second-order system responds differently as the
frequency is varied.
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Considering a cycle contains 2 �p radians, the four curves represent frequencies
of 0.4 to 0.08 Hz and periods (1/frequency) from 2.5 seconds to 12.5 seconds.
Let’s look at a table of some of these values and see how they relate to the response
time.

Frequency, radians 2.50 1.50 1.00 0.50

Frequency, Hz 0.40 0.24 0.16 0.08

Period, seconds 2.5 4.16 6.25 12.5

Time from 0 to 1 (T0-1) 0.7 1.20 1.80 3.60

Ratio of T0-1 to period 0.28 0.28 0.28 0.28

Time from 0 to first peak 1.3 2.1 3.2 6.4

Ratio of T0-peak to period 0.52 0.50 0.51 0.51

Here are two usable rules of thumb. These numbers help you make sure the sys-
tem responds fast enough to suit your requirements:
� The response time from t � 0 to the curve reaching a value of 1 is about 28 per-

cent of the period. The period can be computed from v as detailed just above.
This allows you to pick your rise time as you pick v.

� The response time from t � 0 to the first peak is about 51 percent of the period
(as you might expect from a sine wave).

� Overshoot Take a look at Figure 2-16. It was made holding the frequency v
constant and varying the damping constant d (we’ll get into how to do that soon).
The curves overshoot the desired level by different amounts. The smaller the
damping, the larger the overshoot. Overshoot can be important because it might
cause your control system to lose track of the final target. Remember the robot
competition we spoke of in the introduction? The robots were all too powerful and
were zipping over the control line so far that they wandered out of the sensor range
and became lost. That was too much overshoot.

� Settling time You might think that increasing the damping is always desirable
in order to decrease the “ringing” and make the system settle down faster. Take a
look at Figure 2-16 to see this occurring. Certainly as the damping increases, the
system looks less wild and converges to the final value of 1 faster, but look at the
response time. As we increase the damping, the response time increases also, so
you will have to make a tradeoff to fit your robot’s design. Damping is about the
only parameter you can increase that will improve the settling time.

� Frequency of oscillation Sometimes the control system will be even more com-
plex than a second-order system. Sometimes the mechanics or electronics are sen-
sitive to specific frequencies of oscillation. This can happen if the mass in the
model has a resonant mechanical frequency. Remember the bridge called
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Galloping Gerdie? It shook itself to pieces because the mechanical engineers
missed damping out a resonant mechanical frequency. Talk about a failure to con-
trol damping. See www.ketchum.org/tacomacollapse.html for an interesting treat-
ment of this particular mechanical failure.
� More variables This brings up a good point. All along, we have assumed that

both the mass and the friction beneath the mass are fixed with respect to fre-
quency as the position of the mass changes.
If the mass is not solid but has a harmonic resonance in its structure, then the
system will not behave per the model. So be very careful that your robot has a
solid construction and as few resonant mechanical elements as possible. It is
much easier to control the position of a one-pound block of steel than it would
be to control a one-pound bowl of jello.

If the coefficient of friction varies with position, similar problems could occur.
We have to clearly identify all the frictional elements at work within our robot
system. Some will be inherent in the materials (like in the springs). Other fric-
tional elements will be accidental and must be carefully analyzed to make sure
they stay constant with position. Its not wise to allow unspecified frictional ele-
ments to govern our system. To take back control of the design, we can can
deliberately put a frictional element of our choosing into the system. If it is
much larger than the inherent or accidental frictional elements, it will swamp
out their effect as much as possible and make our design more reliable in its
performance.

� Stability An entire body of control system theory is devoted to the stability of
systems. We certainly know from the bridge example that it’s important. It’s also
extremely complex in the mathematical theory and we need not go into it here, but
we should look at several pieces of advice. First, we should identify just what
instability is.

Some control systems, if not designed right, can oscillate way too much, upset the
mechanics, and ruin the operation of the robot. These oscillations can stem from
various flaws in the design.
� Resonant frequencies As we just mentioned, make sure the mechanics and

other physical elements of the system, such as the frictional components and
spring elements, do not have resonant frequencies. Make sure they behave the
same way across all the frequencies to which the robot will be subjected. One
way to ensure this is to put the system on a mechanical vibrator, as we’ll see later.

� Bad selection of the frequency v Sometimes the mechanical system does
have some resonant frequencies within the design. If v is chosen wrong, the
ringing may be way too large and the system may be unstable. Alter v and see
if things calm down. If this helps, then analyze the mechanics again.
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� Nonlinear elements We have to realize that our model depends on a linear
behavior of all the components. We expect a smooth performance all the way
around. Between loose pieces (that might move free and then snap tight) and
some “digital” elements (that are on-off), some jerky motion will occur. Try to
minimize the effect of these components; we’ll look at nonlinear design in a
while.

� Too much overshoot Sometimes a system will move the robot too far and be
unable to recover. Such a situation occurred in the introduction where a robot
moved too far in one single motion and its limited “eye” was not given time to
see that it passed the boundary where it was supposed to stop. Such a situation
can occur if there is too much overshoot. One solution is to increase the damp-
ing on the system.

� Complex designs Often, the robot is much more complex than our second-
order system. If it really is a third-order or higher system, take the time to try
to simplify it. Look at the performance and look at the specifications.

Let me give you an example of trouble brewing. Suppose we are trying to
design a baseball robot. It has to run, catch, and throw. It might be able to run
and catch at the same time, but it would be simpler to build a robot that would
run under the ball, stop, and then catch it. Similarly, it would be simpler if the
robot would stop running before it had to throw the ball. Granted, a human
baseball player would never get to the majors playing like that. However, if the
specifications and performance requirements can be relaxed ahead of time and
if we can afford to have a clunky robot player, then our design will be much
simple if you can partition the design. We then just separately design a runner,
a catcher, and a thrower. We do not have to combine the designs and suffer the
interactions that drive up complexity and threaten the stability of our design.
Again, we repeat the old advice: Keep it simple.

You laugh about robots playing baseball? Just keep your eyes on the minor
leagues! See Figure 2-18 from http://home.twcny.rr.com/mgraser/ballpark.htm.

So how do we stabilize a system? Several symptoms can occur. They’re easy to
observe and correct:

� Severe overshoot Sometimes overshoot can become very large. We can fix it by
increasing the damping constant d (we’ll get to how that’s done soon). Refer to
Figure 2-17. Changing v won’t affect the overshoot much. If changing doesn’t
help, perhaps the robot is not following the model and we should determine why.

� Severe ringing (the oscillations are causing problems) To fix this, we can
increase the damping constant d. This will help decrease the oscillations sooner.
If the oscillations are still objectionable, we must investigate why this is the case.
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If the robot is susceptible to oscillations at specific frequencies, consider altering
v to a frequency that might work better inside the system.

� Unknown oscillations Sometimes robots will just not follow the model and
behave properly. That’s okay. Kids behave the same way and it’s all part of the joy
of living. The result is that instabilities might develop with severe vibrations or
even wild behavior. (This sounds more like my family by the minute.) With the
kids, we can experiment with cutting down on the sugar. With robots, we can con-
sider taking two actions:
� Perform the actions mentioned earlier to get rid of severe ringing.
� Look for design flaws in the mechanics and control system that would make it

more complex than the second-order system we’re trying for. Look for places
energy might be stored that we didn’t expect. Change the design to compensate
for it.

What happens when we take a second-order system and try to put it in a closed-loop
feedback system? Well, consider the following closed-loop feedback control system
(see Figure 2-19).

Let’s assume the actuator is a second-order system such as the one we have studied.
As we’ve seen, it will not react immediately to a step input function. It goes through
some delay, a rise time, and then a settling time. Suppose we wildly put inputs into the
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FIGURE 2-18 A baseball pitching robot trying for the Cyborg Young Award
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input signal. Since the actuator cannot respond right away, output signal d would not
change right away. The error signal b would reflect our wild inputs. The actuator input
would see a wildly fluctuating input as well. If our input signals fluctuated somewhere
near the natural frequency, v, of the sytem, the output might actually ring out of phase
with the input signal. This is exactly what happens when we oversteer a car. A car’s sus-
pension can be modeled as a second order system where:

� The mass is represented by the car itself.
� The springs are in the suspension.
� The damping friction is in the shock absorbers.

If we’re driving a car and swing the wheel back and forth at just the wrong frequency,
the car will weave back and forth opposite the way we’re steering and go out of control.

Here’s an example where a second-order system is overcompensated by a human
feedback control system. Although most cars are well designed, little can prevent us
from operating them in a dangerous manner. For whatever reason, this flaw in the design
of cars is left in. What is needed is a filter at the steering wheel that prevents the driver
from making input that the car cannot execute. A good driver will not oversteer and does
so by not jerking the wheel around too rapidly. In effect, a good driver filters his actions
to eliminate high-frequency inputs. This prevents the car from going out of control. You
can do the exact same thing with your control system by putting a high-frequency fil-
ter on the input, ideally one that will attenuate input signals of a frequency higher than
v/2. Since the the construction of filters is an art unto itself, it’s left to the reader to
study the technology and implement the design. Now let’s tackle the third goal.

HOW TO ALTER THE ROBOT’S DESIGN PARAMETERS

We have already seen that altering v and d can substantially change the performance of
the robot. Further, altering these parameters offers a reliable way to change just one type
of behavior at a time without significantly disturbing the other behaviors. For instance,
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FIGURE 2-19 A second-order system used as the acutator in a closed-loop
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altering d changes just the overshoot, with minimal changes to the rise time. Altering v
changes just the ringing frequency with minimal changes to the overshoot. Here’s how
to alter v and d:

� Altering v
� We know that 1/v2 � m/K.
� v � (K/m)0.5

� To change v, change K or m or both. We can change K by putting a different
spring in. A stiffer spring has a higher value of K. We can change m by alter-
ing the mass of the robot.

� Beware!
� We know that 2 � d/v � B/K.
� If we change v or K, then we must change B if we want to hold d constant.

� Altering d
� We know that 2 � d/v � B/K.
� Given v is held constant, in order to change d , alter B if possible. Only alter K

if we must.
� Beware!

� We know that 1/v2 � m/K.
� If we change K, then change m to hold v constant.

� Most of us are familiar with a particular way of altering d. Many older or used
cars will exhibit a very bouncy suspension. When driven over a bumpy road, the
car will bounce along and be difficult to control. The wheels will often leave the
ground as the car bounces. Most experienced drivers will realize that the car
needs new shock absorbers. But what exactly is happening here? The mass m of
the car is not changing. The springs (spring constant K), installed at the factory
near each wheel, have not changed. The shock absorbers have simply worn out.
The shock absorbers look like tubes, about the size of a toddler’s baseball bat, and
are generally found inside the coil spring of each wheel. These shock absorbers
are filled with a viscuous fluid and provide a resistance to motion as the tires
bounce over potholes. They exhibit a fluid friction coefficient of B. Unfortunately,
the shock absorbers can develop internal leaks and the value of B decreases.
When this happens, the overshoot of the second-order system becomes too great,
and the wheels start to leave the ground. Replacing the shocks restores the orig-
inal value of B and brings the overshoot back to the design levels. Bigger cars
have more mass, bigger springs, and generally have larger shocks.
Here is a PDF file and a web site dealing with the management of shock:
www.lordmed.com/docs/ia_CATALOG.pdf

Let’s tackle the fourth and final goal.
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HOW TO GET OPTIMUM PERFORMANCE 
FROM THE ROBOT

The requirements for a second-order system might vary all over the place. We might
need a fast rise time; we might need a quiet system that does not oscillate much; we
might need to minimize mass or another design parameter. Don’t forget that v and d
are parameters derived from m, K, and B. We might be stuck with one or more of these
five parameters and have to live with them. For example, the mass m might be set by
the payload, the spring constant K might be inherent in the suspension, and the friction
B might be set by the environment.

In many systems, the requirements are often at odds with one another and compro-
mises must be struck. In such a design, it is often difficult to figure out what to do next.
So here’s a fairly safe bet. Take a close look at Figure 2-16. It shows four curves, includ-
ing the lowest curve at a damping figure of 0.99. A second-order system with a damp-
ing constant near 1 is called “critically damped” (see Figure 2-20). The system rises
directly to the level of 1. No overshoot or undershoot takes place. True, the rise time is
nothing to marvel about, but the system is very stable and quiet. Designing a system to
be critically damped is a good choice if no other definable target exists for its per-
formance. It tends to be a very safe bet. In practice, it makes sense to back off from a
damping constant of 1 a little bit, since an overly damped system is a little sluggish. If
you can afford some overshoot, consider a damping constant between .5 and .9.

Notes on Robot Design
There are a number of other considerations to take into account when designing a robot.
I’ve listed them here in no particular order. These are just tricks of the trade I’ve picked
up over the years.

DESIGN HEADROOM

Cars offer great examples of second-order system designs. A car designer might be
called upon to design a light car with a smooth ride. Ordinarily, a light car will bounce
around quite a bit simply because it’s smaller. Carrying this vision to an extreme, con-
sider a car so small it has to drive down into a pothole before it can drive up the other
side and get out of it. Certainly, a lighter car will suffer from road bumps more than a
heavier car, but there is more to it than this. When a car goes over a pothole, the springs
and suspension attempt to absorb the impact and shield the passengers from the jolt.
But if the springs reach the end of their travel (as they would with a deep pothole), they

50 CHAPTER TWO

02_200256_CH02/Bergren  4/17/03  11:23 AM  Page 50



become nonlinear. In this situation, the second-order model breaks down, the spring
constant becomes quite large for a while, and all bumps are transmitted directly to the
passengers and the rest of the car. That’s how you bend the rims, ruin the alignment, and
get a neck cramp! It is up to us, as designers, to make sure the second-order system has
enough headroom to avoid these problems. If your robot is to carry eggs home from the
chicken coop, make sure the suspension is a good one (see Figure 2-21).

NONLINEAR CONTROL ELEMENTS

Thus far in our calculations and mathematics, we’ve assumed that all control elements
behave in a linear fashion. Very roughly defined, this assumes a smooth, continuous
action with no jerky motions. Bringing in a definition from calculus, this linear motion
is characterized by curves with finite derivatives. Figure 2-22 shows a continuous curve
and a discontinuous curve. Picture for the moment sending your robot over the terrain
described by each curve and it will be easy to visualize why we should be considering
nonlinear control elements in this discussion. We must be prepared to deal with such
matters because most robots have some nonlinear elements somewhere within the
design. Often, these elements are inherent in the mechanics or creep into the control
system when we least expect it (see Figure 2-22).
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FIGURE 2-20 A critically damped second-order control system is sometimes
considered optimal.
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Consider the case of an actuator or sensors that are either off or on. These are famil-
iar to you already:

� Thermostats The furnace in most houses cannot be operated halfway. The burn-
ers do not have a medium setting like a stove. Either the heater is all the way on
or the heater is completely off. The thermostat represents the sensor feedback con-
trol input signal. It turns the heat all the way on until the temperature at the ther-
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FIGURE 2-21 This robot has an insufficient dynamic range in its shock-
absorbing suspension.
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FIGURE 2-22 A visual image of continuous and discontinuous functions
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mostat goes over the temperature setting. Then it turns the heat all the way off until
the temperature falls below the temperature setting. It’s expensive and inefficient
(in terms of combustion) to ignite a furnace, and it’s best if it runs for a while once
it is ignited. The net result is that the temperature in the room doesn’t stay at a sin-
gle temperature. Instead, it cycles up and down a degree or two around the setting
on the dial. This action, taken by many control systems, is called hunting. We’ll
talk about hunting shortly (see Figure 2-24).
This hunting action by the heating system is just fine in the design of the ther-
mostat. Humans generally cannot sense, nor are they bothered by, the fluctuations
of temperature about the set point. But consider a light dimmer. If the dimmer
turned the lights on and off five times a second, reading would be rather difficult.
Instead, dimmers turn the light on and off around 60 times a second so the human
eye cannot sense the fluctuations. When you design a system that will have hunt-
ing in the output, be sure you know the requirements.

� Mechanical wracking Many mechanical systems have loose parts in them that
will slip and then catch. In the model second-order system, consider what happens if
the weight is mounted to the spring with a loose bolt. As the weight shifts direction,
the bolt comes loose for a while and then catches again. The spring constant actually
varies abruptly with time, and the smooth response of the system is disrupted.
You can model the robot’s performance by considering that the model system will
behave in two different ways. While the bolt is caught, the spring constant is per
design. While the bolt is loose, the spring constant is near 0. If such a mathemat-
ical model is too difficult to chart, you can take the following shortcut. Just fig-
ure on adding the mechanical wracking distance (the distance the weight moves
unconstrained by the bolt) to the overshoot and undershoot. This will make a good
first estimate of its behavior. In practice, try to minimize the mechanical instabil-
ities in the robot.

� Digital actuators Many other actuators and sensors tend to be digital. Consider
a solenoid. It’s basically an electromagnet pulling an iron slug into the center of
the magnet. It’s either off or on. The iron slug provides the pull on the second-
order system when the electromagnet is activated (see Figure 2-23).
Effectively, our model of the second-order system is good for predicting the sys-
tem’s behavior since the solenoid behaves like a step input.

HUNTING

We’ve seen in the case of the thermostatic heating control system that the output of the
system will hunt, effectively cycling above and below the temperature set point with-
out ever settling in on the final value (see Figure 2-24).
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In linear control systems with a great deal of power and some weaknesses in the high-
frequency response, the output response will actually have a hunting sine wave on it.
This disturbance can be quite annoying, much like the buzz in a stereo system. It’s not
unlikely that the oscillations would be at v unless governed by a nonlinear element in
the system (see Figure 2-25).
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FIGURE 2-23 Electromagnets exert pull inside relays, soleoids, and electric
motors.
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FIGURE 2-24 Thermostats are control systems that exhibit hunting.
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Think for a minute how upsetting it would be if the elevator door opened and the
height of the elevator oscillated up and down while you were trying to get off! In many
systems, hunting is not acceptable. Hunting behavior can be avoided by refraining from
using any nonlinear elements:

� Digital actuators that are on-off (like a solenoid) introduce nonlinear motion into
a system.

� Don’t use digital sensors that report only on and off. The sensors that turn on night
lights are like this. They do not bring the lights on slowly as it gets dark.

� Avoid mechanical wracking. The mechanical parts of the robot may make sudden
moves if all the bolts are not tight. The control system cannot compensate for this
very well.

� Decrease v. Often, if we decrease the frequency response of the system, we can
avoid oscillations. Of course, this comes at the expense of slower performance.

� Add a hysteresis element to the control system; such an element is defined as “a
retardation of an effect when the forces acting upon a body are changed.” The
common way to look at a hysteresis element is that it behaves differently depend-
ing on the direction. We are including here a few nonlinear control system ele-
ments that we can make a case for grouping with the hysteresis topic. Here are
some examples of hysteresis elements:
� A friction block that drags more easily one direction than the other.
� A spring system that puts two springs into service when moving one way, but

releases one spring when moving the other way.
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FIGURE 2-25 A control servo system exhibiting unwanted sine-wave
hunting
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� An object with a ratchet mechanism on it so it moves one tick mark easily in
one direction but will not move one tick mark the other way unless it’s being
forced to move two tick marks that way. Such a system is great for keeping the
object still when it comes close to equilibrium (see Figure 2-26).

� Gain changes based on position are another example. Elevators typically have
powerful motors pulling them up and down when they are between floors. When
they get very near the desired floor, they switch to less powerful motors to make
the final adjustment before stopping. When the door opens, they may even turn
off the motors completely. These sorts of gain changes make it much easier to
avoid hunting in the final position of the control system (see Figure 2-27).
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FIGURE 2-26 Mechanical (or electrical) hysteresis prevents symmentrical
movement.
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FIGURE 2-27 Control system gain can be decreased near equilibrium.
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A CAUTION

So far, we’ve been talking about robot control systems in a very abstract way. The equa-
tions show very nicely that our mathematics will cleanly control the position of our
robot in a very predictable manner. Further, we can smugly make minor parametric
changes in the equation and our robot will blissfully change his ways to suit our best
hopes for his behavior.

Well, it’s very easy to get lost in such a mathematically perfect world. Those of us who
have had kids are well acquainted with a higher law than math called Murphy’s Law. Visit
www.murphys-laws.com for the surprising history of Murphy’s Law on the variants
thereof that apply to technology. I had long suspected that such wisdom would be bibli-
cal in its origin, but it came into being in 1949.

Murphy’s Law, as commonly quoted, states “Anything that can go wrong will go
wrong.” All along, we have been plotting and scheming to build and control a second-
order control system. We’ve got that pretty well down. The trouble is our model will
never exactly fit the real-world robot we’re building. We have a mathematical control
system that will control a single variable, such as our robot’s position, to ever-exacting
precision. However, this will not be the only requirement we will have to satisfy. We have
ignored other unstated requirements along the way. To satisfy these other requirements,
we may have to change the behavior of our simple control system, or we may have to put
in even more controls. The following section on multivariable control systems speaks to
this issue somewhat. Here’s a few other requirements that are liable to crop up:

� Speed Great, we’ve designed our position control system so our robot will move
to where it belongs. But what about speed traps? Velocity is the first derivative of
position. In the parlance of the variables we have been using, v � dx/dt. We really
haven’t worried about speed at all so far. Clearly, it is partially related to the rise time
of the position variable. The quicker the control system can react to changes in posi-
tion, the faster it is likely to go. But there will be various restrictions on speed:
� Safety Sometimes it’s just not safe to have a robot moving around at higher

speeds.
� Power Sometimes it’s wasteful to go too fast. Some motors and actuators are

not as efficient at top speed.
� Maneuvering Some robots don’t corner well. It can be advisable to slow

down on the curves.
� Acceleration Fine, we’ve designed our velocity control system so our robot will

not speed or be a hazard. But how fast can we punch the accelerator? Acceleration
is the first derivative of velocity and the second derivative of position. In the parl-
ance of the variables we have been using,

A �  dv>dt �  d2x>dt2
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We really haven’t worried about acceleration at all so far. But various restrictions
on acceleration will take place:
� Traction Wheels, if we use them, can only accelerate the robot a certain

amount. Beyond the traction that the wheels provide, the robot will burn
rubber!

� Balance The robot might pop a wheelie.
� Mechanical stress Acceleration imposes force on all the parts of the robot.

The robot might rip off a vital part if it accelerates too fast. More on this later.
� Mechanical wracking The robot will change shape as it accelerates. This

happens in loose joints and connections. More on this later.

So with all these variables to control at one time, what do we do?

Multivariable Control Systems
Up to this point, we’ve been trying to build a control system for the robot that could
serve to maintain a single variable, such as position. We should recognize that the math-
ematics of the control system are very general and apply just as well to robots that want
to control other single variables like speed or acceleration. Although cruise control sys-
tems are very complex, they are simply control systems that regulate speed to suit the
driver’s needs.

But what happens if we want to control two or more variables simultaneously?
Suppose we want the robot to follow a black line and move at a safe speed. Control of
both position (relative to the black line) and velocity (so the robot does not veer too far
off course during high-speed turns) puts us in the position of controlling two variables
at the same time. How do we do this? (See Figure 2-28.)

One solution is to put two separate control systems into the robot. One system will
control the position relative to the black line. The other control system will make sure
the robot moves at the appropriate speed. Such a control system is inherently a distrib-
uted control system such as the ones we discussed earlier. Cars do, in fact, have multi-
ple computers handling these tasks. Each control system has its own set of issues that
we have discussed, such as steady state error, overshoot, ringing, and settling time.
However, as we discussed in the section on distributed control systems, things can
become complex very rapidly. Here’s some points to consider:

� Wouldn’t it make sense to slow the robot down if it is very far off the black line?
� Would it be a good idea to speed up if the robot has been on course for quite a

while?
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� What do we do if one of the control systems determines that it is hopelessly out
of control? If it loses track of the black line, should it slow down?

� If the robot is moving very rapidly, does it need to look farther ahead for bends in
the black line?

All the scenarios argue for sending information back and forth between the two con-
trol systems. Further, the ways in which they interact can become very complex. At
some point, if more and more control systems are added to the robot, the following can
occur:

� Multiple control systems get expensive.
� Communication between the control systems can get expensive and slow things

down. In the worst case, communication errors can occur.
� Interactions between the control systems can get unpredictable. In the worst cases,

instabilities can arise. These instabilities can take the form of unexpected delays
or thrashing. Thrashing arises when two control systems disagree and fight over
the control of parts of the system. Each control system sees the actions of the other
as creating an error.

� Designs can become very complex to accommodate all cases.
� Designs can become difficult to maintain. As one control system is changed, other

control systems may cease to function. Retesting the robot becomes a large task.

Many years ago, in the primordial soup of engineering history, engineers began to
consider control systems that had more than one variable. We need only look at old
drawings of steam engines to appreciate this. They had to regulate speed, pressure, tem-
perature, and several other variables all at the same time. The general approach back
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FIGURE 2-28 It’s hard to control two variables at the same time (such as
speed and direction).
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then was to put multiple mechanical control systems in with interlocks as needed.
Failure meant explosion!

The speed governor in Figure 2-29 is a great example of a mechanical engineer used
to solve a control system problem. It regulates the speed of an engine. As the engine
speed increases, the two metal globes spin around the vertical shaft. Since the outward
centrifugal force increases, the globes start to move outward, pulling on the diagonal
struts. The diagonal struts, if pulled hard enough, will pull up the base and release some
steam pressure. This keeps the engine from going too fast. It’s a good example of a sep-
arate control system for velocity. School buses still have such mechanisms on their
engines if you look carefully. But better ask permission before snooping around!

A nice example of a governor design can be found at www.usgennet.org/usa/topic/
steam/governor.html. A few years later, engineers began to think about centralizing con-
trol systems. Computer electronics facilitated this transition since all the information
could easily be gathered in one place and manipulated. The engineers cast about for a
way to control multiple variables at the same time and raised several key questions:

� How would a multiple variable system be designed? What framework would it
have?

� How many variables could be controlled at the same time?
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FIGURE 2-29 The speed governor is a venerable mechanical feedback
control system.
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� What equivalent exists for a “steady state error” in a system with multiple vari-
ables?

� How do we evaluate the relative state of the control system? How far is it from the
optimal control state? What is the error signal?

� How can we alter the design of the system to affect its performance?

Let’s look at the first question.

HOW WILL WE DESIGN THE MULTIPLE VARIABLE
SYSTEM? WHAT FRAMEWORK WILL IT HAVE?

Let’s assume for simplicity’s sake that we are trying to design a control system to control
just two variables at the same time: X1 and X2 (perhaps position and velocity). The fol-
lowing discussion can be generalized to n variables (X1, X2, X3 . . . Xn) on the reader’s
own time. We can call the combination of the variables X1 and X2, the vector X.

Let’s assume that the desired state of the two control variables is as follows:

� X1 � X1d
� X2 � X2d

We can call the desired state of vector X, the vector Xd.
If computers are used in the control system, the computer periodically finds a way to

change X based on the value of Xd. In such a control system, we speak of computations
executed at periodic, sequential times labelled t � 1, t, t � 1, and so on. We use the fol-
lowing notation:

� X(t � 1) shows the values of X at the previous computation time.
� X(t) shows the values of X at the present computation time.
� X(t � 1) shows the values of X at the next computation time.

Similarly, Xd(t) represents the time series of values for Xd.
To compute the next value of X1, for instance, the computer will look at the previ-

ous and present values of both X1 and X2 and determine which way to change X1 in
an incremental way. The same computation is done for X2. Done properly, X1 and X2
will slowly track the desired values. But how do we go about finding the iteration?

Iteration is a process of repeating computations in a periodic manner toward some par-
ticular goal. Usually, an iteration equation governs the process of iteration. The follow-
ing is a general-purpose iteration equation that is often used in robots. X(t) is computed
by iteration by taking values at time t and iterating to the next value at time t � 1:

X1t �  1 2 �  X1t 2 �  S1t 2 �  1d C1X1t 2 2>d X1t 2 2
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In the equation, S(t) is a vector of step sizes that might change with time but can be
fixed. This vector could contain, in our example, two fixed step size values, each
roughly proportional to 5 percent of the average size of X1 and X2. An alternate method
could have the vector contain two varying step size values, each roughly proportional
to 5 percent of X1 and X2’s present values. The point is X1 and X2 will change gradu-
ally in a particular direction in order to satisfy control system requirements. If the cost
function C(X(t)) shows that X1 must increase, then the time iteration of the equation
will bump X1 up by the step size. If the cost function shows that X2 must decrease, then
the time iteration of the equation will bump X2 down by the step size.

C(X(t)), a vector of cost functions based on X(t), is yet to be defined. The cost func-
tion is a measure of the “pain” the control system is experiencing because the values
(past and present) of X(t) do not match the desired values of Xd(t). We use the deriva-
tive (d C(X(t))/d X(t)) because we want the corrective step size

� To be larger if the cost (pain) is mounting rapidly as X(t) changes the wrong way.
Thus, we must take more drastic corrective action.

� To be smaller if the cost (pain) is not mounting rapidly as X(t) changes the wrong
way. We are near the desired operation area and are not in pain, so why move
much?

Such an iteration equation can be used as a solution for robotic control. But what’s
missing is the cost function. The proper choice of a cost function really determines the
behavior of the robot. Much of modern work on control systems revolves around the
choice of the cost function and how it is used during iteration.

One very popular framework to give the control system is the least squares frame-
work, discovered by Legendre and Gauss in the early nineteenth century (see
Figure 2-30). Termed the least mean square (LSM) algorithm, it sets the cost func-
tion C(X(t)) proportional to the sum of the squares of the errors in each element of
the vector:

where k is an arbitrary scaling constant.
In our specific example, we could set the cost function to the sum of the squares of

the errors:

Differentiating by X1 and X2, we get the two elements of (d C(X(t))/d X(t)):

d C1X21t 2 2>d X21t 2 �  X21t 2 �  X2d1t 2

d C1X11t 2 2>d X11t 2 �  X11t 2 �  X1d1t 2

C1X1t 2 2 �  0.5 �  1 1X11t 2 �  X1d1t 2 22 �  1 1X21t 2 �  X2d1t 2 22 2

C1X1t 2 2 �  k �  �n1X1t 2 �  Xd1t 2 22
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The cost function increases in magnitude as the square of the errors. The step size,
used to recover from errors, then increases linearly proportional to the error.
Specifically then, since

we have the two elements iterated as follows:

If we were to set step sizes S1(t) � S2(t) � 0.1, then

Thus, X1 and X2 slowly seek the values of X1d and X2d. Also, X(t) slowly seeks the
value of Xd(t).

Before we look at cost functions other than LMS, let’s finish answering some of the
other questions we posed earlier.

X21t �  1 2 �  0.9 �  X21t 2 �  0.1 �  X2d1t 2 2

X11t �  1 2 �  0.9 �  X11t 2 �  0.1 �  X1d1t 2 2

X21t �  1 2 �  X21t 2 �  S21t 2 �  1X21t 2 �  X2d1t 2 2

X11t �  1 2 �  X11t 2 �  S11t 2 �  1X11t 2 �  X1d1t 2 2

X1t �  1 2 �  X1t 2 �  S1t 2 �  1d C1X1t 2 2>d X1t 2 2
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02_200256_CH02/Bergren  4/17/03  11:24 AM  Page 63



HOW MANY VARIABLES CAN BE 
CONTROLLED AT THE SAME TIME?

Practically speaking, the LMS algorithm can handle an arbitrary number of simultane-
ous variables. However, as the number of variables increases, the danger of interactions
increases drastically. The primary danger is that unknown interactions between the vari-
ables will throw off the calculations and destabilize the control system. This often shows
up in the math if the variables are not completely independent. In our example, the
derivative of X1 with respect to X2 may not truly be zero, or vice versa. This would
greatly compromise the stability of the stepping iterations. As a general rule, try not to
use a single control system to handle too many variables at the same time. Two to four
variables is a good place to stop.

WHAT IS THE EQUIVALENT FOR 
STEADY STATE ERROR WHEN USING 
MULTIPLE VARIABLES?

First of all, where multiple variables exist, be aware it’s entirely possible the system will
never come to a steady state. However, it is possible for the digital calculations to set-
tle into a completely stable and quiet solution. Such a solution would have X(t) stable
and equal to Xd(t).

However, with certain minimal step sizes, it may not be possible to converge on a
quiet solution. Think for a minute of a system at 9, seeking 10, with a back and forth
minimal step size of 2. The system will likely bounce back and forth from 9 to 11 and
back to 9 forever. A carefully designed control algorithm can avoid such a problem, but
we leave it up to the reader to work this out.

HOW DO YOU EVALUATE THE RELATIVE STATE 
OF THE CONTROL SYSTEM? HOW FAR IS IT 
FROM THE OPTIMAL CONTROL STATE? 
WHAT IS THE ERROR SIGNAL?

For an LMS system, you can track the size of the cost function. All the terms in the
sum are positive, squared numbers. The magnitude can be used as a measure of the
state of the system. We clearly want it to be small. Further, the first derivative of the
cost function should be quiet. The relative noise level of the cost function is a meas-
ure of the volatility of the system and it can be used to indicate disruptions at the inputs
of the system.
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HOW CAN WE ALTER THE DESIGN OF THE 
SYSTEM TO AFFECT ITS PERFORMANCE?

An LMS algorithm is relatively straightforward for the following reasons:

� We can keep the step sizes in the vector S(t) as constants. If the step sizes vary
between 0 and 1, the system response speed varies from glacial to jack rabbit. We
must recognize that jack-rabbit control systems have too high a frequency and are
vulnerable to overshoot, ringing, and instabilities. A good bet is to get your robot
working first and then back down the values of S(t).

� We can alter the step sizes in the vector S(t) to keep the rest state of the system
quiet. The way in which this is done must be chosen with great care to avoid
adding noise to the system. One good bet is to decrease the step sizes as the sys-
tem starts to quiet down, and increase the step sizes (within reason) as the system
begins to get noisy and active.

� We can alter the step sizes in such a way that they are always a power of 2 (like
1/8, 1/4, 1/2, 2, 4, 8, 16, and so on). Multiplying (or dividing) by a power of 2 only
requires a simple shift operation in binary arithmetic. Restricting the step sizes to
such values can make LMS computations much simpler for smaller microcom-
puters to execute.

� We can set the step size to 0 when the cost function is small enough. This will pre-
vent thrashing around near the optimal solution. Such thrashing around can be
caused by input noise and by minor arithmetic effects. Picture an elevator open-
ing its doors. The passengers are no longer interested in getting exactly to floor
level as long as it’s close enough. The passengers would be truly upset if the ele-
vator control system was still moving up and down a tiny bit trying to get it just
right. Instead, elevator control systems stop all action when the doors open. We
can achieve a similar effect by setting the step size to 0. We will look at other
safety considerations later.

NON-LMS COST FUNCTIONS

A control algorithm, like LMS, has behavioral characteristics that will affect how our
robot will behave:

� LMS control systems tend to react slower to inputs. This usually means they have
slower reaction times.

� LMS control systems are more stable in the face of noise on the inputs.
� The math is not difficult and does not consume valuable computer resources.
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Other cost functions beyond LMS are available. LMS still requires multiplication,
which can eat up computer time and resources. LMS multiplies the step size by the dif-
ferential error (X1 � X1d) to get the iteration step size. This can be approached in other
ways:

� Use just the sign of (X1 � X1d), not the magnitude. The sign simply indicates
which way X1 is off. The entire step size is then simply added or subtracted from
X1 to iterate to the next value. This makes the iteration step a simple addition or
subtraction and avoids the multiplication. This can be of particular value if we
choose to use a small microcomputer that has no multiplier.

� Use the relative size of (X1 � X1d) to pick the step size from a table of step sizes.
This can work well and also avoids multiplication. It can converge faster when the
cost function is large and can remain fairly quiet about the optimal solution. Care
must be taken when switching gears in an arbitrary manner like this. Please reread
the earlier “A Caution” section.

Multivariable systems have other peculiarities to worry about as well. Issues of sta-
bility, convergence, and speed of operation all must be addressed here:

� Stability As already discussed, if the step size is too large, the system may oscil-
late about the solution point in an unacceptable manner. Further, all the variables
may not be able to reach an optimal solution at the same time. The system may
remain noisy forever, even if the inputs stop moving.

� Convergence It’s possible, in some situations, that the control system will not
actually move to an acceptable solution:
� Finding a solution Sometimes the starting position of the robot can affect

whether it will move to the desired location or not. The control system always
has a set of points beyond which it cannot recover. In the design and operation
of our robot’s control system, we must assure ourselves that the robot will not
be asked to recover from such a situation. Note that we must determine what
an acceptable solution is for the robot. Often, this involves some metric on the
size of the cost function, but this can be done many different ways.

� Avoiding false solutions Sometimes arithmetic systems will settle into a
false solution. An example might be a robot looking for the highest hill, only
to find a smaller hill nearby. If the control system must contend with a com-
plex environment, this can happen easier than we might suspect. If the situa-
tion looks suspicious, consider putting some safety mechanism into the control
system that will jar the robot out of a false solution if it gets stuck in one. Such
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a “safety” system must be very well designed to make sure it does not create a
false alarm and disrupt a perfectly good solution.

� Speed of operation As with any robot control system, good performance is
always expected. The speed of operation is almost always one of the criteria. If the
step sizes are too small, it might take intolerably long to move to the proper solu-
tion. Choose the step size to optimize the robot’s behavior in terms of speed and
accuracy. Consider choosing the step size to best match the capability of the robot
to move and maneuver. If the match is close, the results will be better in the form
of smoother operation.

Now we need a bit of a reward for having slogged through so much “useful” math.
It’s time to dream a bit and talk about more esoteric matters that might not affect us
today or tomorrow but are important anyway.

Time
A little ways back in this book, we talked about the fact that the earth cannot be counted
on to be a stable reference point for our robot. As a practical point, it truly is stable
enough in every case I’ve ever seen, so I’m content not to worry about the earth.

But along comes Albert Einstein to throw us another curve ball (see Figure 2-31). It
turns out that we cannot count on time itself to be unvarying in our calculations.
However, if the robot is puttering around at a slow speed and stays away from black
holes, we can probably ignore the considerations that follow. If the robot will be mov-
ing at high speeds relative to the earth, then Einstein’s calculations come into play.

In the very early 1900s, Einstein came up with the special theory of relativity, which
holds that time does not always run at the same rate. If two bodies are moving with
respect to one another, they will experience time running at two different rates. The
effect does not become serious until the speeds are high. But even the astronauts cir-
cling the earth have to take relativisitic time into account or their orbital calculations
will be off. The following URLs show some of the calculations involved in the theory.
It was a Polish mathematician Minkowski who provided the math that eluded Einstein.

� www.astro.ucla.edu/�wright/relatvty.htm
� www.physics.syr.edu/courses/modules/LIGHTCONE/twins.html

Time varies roughly as 1/sqrt (1 � (v/c)2), where v is the relative velocity of the
object and c is the speed of light. Using this formula, plugging in an orbital speed of
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roughly 8,800 meters per second, and given the speed of light at roughly 300,000,000
meters per second, we get a time dialation for an orbiting spacecraft of

So, consider the Soviet cosmonaut who spent 458 days in space (the record) (for a
total of 458 � 24 � 60 � 60 � 39,571,000 seconds). Ignoring all the other motions of
the spacecraft other than the orbital speed, the cosmonaut’s time dialated 39,571,000 �
1.0000000004 � 39,571,000.017 seconds.

Thus, after over a year in orbit, a time change of 17 milliseconds has occurred for
the cosmonaut. That’s not very much, but at an orbital speed of 8,800 meters per sec-
ond, the cosmonaut would be off by 150 meters (8800 � 0.017). That’s not very far in
terms of the earth’s expanse, but a big error while you’re trying to dock! Orbital plan-
ners do take relativistic effects into account in planning orbits and interplanetary
missions.

1.0000000004

1>sqrt 11 �  0.00000000086 2 �

1>sqrt 11 �  18800>300,000,000 22 2 �
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Space
Well, if it’s not bad enough having to worry about just what time is, Einstein threw
another monkeywrench into our collective thinking. The General Theory of Relativity
holds that the fabric of space itself isn’t just a series of straight perpendicular lines like
some street pattern, but rather it’s curved and changing! He came up with this theory
using a truly beautiful “thought experiment.” Instead of working in a lab, Einstein sat
down and pictured the experiment in his head. Here’s how his thinking went.

Suppose we are sitting in a room in far outerspace where no gravity exists. Two holes
are in the wall, one to the left and another to the right. A beam of light comes in one
wall and out through the other. It does not take long for the beam of light to cross the
room at light speed. Light travels one foot per a billionth of a second (see Figure 2-32).

Now, if you accelerate the room upward at 32 feet/second/second (1 G of gravity),
when the next beam of light comes through the first hole, it won’t make it out through
the second hole (which has now moved). From our standpoint sitting the the room, the
light beam curves after it enters the room and hits the wall too low (see Figure 2-33).

Now suppose instead of acceleration, we put the earth immediately under the room.
From our standpoint sitting in the room, we could not tell the difference. We still expe-
rience 1 G of accelerative force under us. The beam of light comes in the first hole and
still bends down to hit the wall below the second hole (refer to Figure 2-33).
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FIGURE 2-32 Einstein’s thought-experiment: Light moves straight in the
absence of gravity.
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Gravity is this bending light. But if we maintain that light must travel in a straight
line at a constant speed, then we must conclude that gravity bends space itself. The very
existence of matter, which engenders gravitational force, bends our fabric of space.

Seems simple enough, right? Lest you worry about your warped existence, please be
assured that the bending of space is quite small and can be ignored in most of our every-
day existence.

Around the First World War, some astronomers decided to put Einstein’s General
Theory of Relativity to a test. They observed some known stars during a solar eclipse.
Sure enough, stars emerged from behind the sun and moon earlier than they were sup-
posed to. The stars’ light was coming from behind the sun (where the astronomers should
not have been able to see it), bending around the sun’s gravity and appearing before they
were supposed to. Further, the amount of the observed bending closely matched
Einstein’s theoretical calculations. This was a revelation in the sciences and confirmed
Einstein’s major discovery. It was a beautiful piece of work (see Figure 2-34).

A few years after that, scientists found three stars in a row, with the outer two appear-
ing identical. It turns out that the light from one star was being bent around an inter-
vening star, so both images appeared to us on Earth. This was another manifestation of
gravity bending light and has been called a gravitational lens. Since starlight can bend
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FIGURE 2-33 Light not only bends in the presence of gravity; it actually
falls.
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around an intervening star in any direction (360 degrees), gravitational lenses often pro-
vide an image of a star as a ring or arc of light. Some nice examples of gravitational
lenses can be found at www.iam.ubc.ca/�newbury/lenses/glgallery.html.

The web page at http://imagine.gsfc.nasa.gov/docs/features/news/07nov97.html has
reported an extreme case of this effect as “a black hole that is literally dragging space
and time around itself as it rotates . . . [in] an effect called frame dragging.”
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FIGURE 2-34 A gravitational lens.The path of light defines straight lines, so
gravity bends space.

STAR
STAR

Multiple
Images

Bending Light

02_200256_CH02/Bergren  4/17/03  11:24 AM  Page 71



This page intentionally left blank.



COMPUTER HARDWARE

Before getting into the nuts and bolts of choosing the computer hardware to include in
the robot, let’s take a step back. What are the reasons for putting a computer inside the
robot? Even experienced engineers choke on this question. It seems, after all, to be a
natural decision. Yet when we look at any one particular reason, there always seems to
be yet another underlying reason behind it. At the beginning of any one phase of the
robot project, it makes sense to analyze the options. Often, a better solution is at hand.
Let’s look at a nontechnical example.

You and your friend are in an open field and are confronted by a hungry lion (see
Figure 3-1). The lion starts to charge and it is clear you must run. What should your
immediate goal be? Some say, “Outrun the lion.” Others say, “Outrun your friend.”

Clearly, it can be difficult to think in stressful situations. If we have time to think, a
better solution can usually be found that will save us much time, effort, and pain. Do
not, however, get trapped in endless rounds of thinking and planning. This too is a good
way to get eaten by the lions.

This survival scenario is a good example of how larger questions always reside above
the immediate question. Did the second answer above make you smile? If so, why?
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So why use a computer at all? The bottom line is

� The project will cost less to complete.
� The robot will be a better one.
� The design can be finished sooner.

Let’s look at where these savings accrue. Every project has costs in terms of time and
money:

� Cost What types of cost exist?
� Direct cash outlay for equipment, parts, and tools.
� Tying up scarce resources. Sometimes projects consume resources that cannot be

replaced but are essentially free. An example would be the time of a key employee.
If another project came along, the key employee would not be available.

� Development time The amount of time the development takes has various costs
attached to it. If the schedule for a commercial robot project slips, a company can
miss a large percentage of the potential profits. As soon as competitors come out
with similar products, profits drop off quickly. The first few months of a product’s
lifetime are the most valuable. If the robot is not ready on time, the opportunity
cost is lost. If a project schedule slips, real costs generally run up. Resources and
personnel can also be tied up, causing a longer development time.

� Risk of failure Managers of robot projects often expend resources early in the
schedule to defuse risks. As an example, consider a robot that must traverse diffi-
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FIGURE 3-1 A hungry lion can be a problem.
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cult terrain. The designers may choose to build a couple of different drive trains
and test them out before proceeding with the rest of the project. If a project has
few risks, the final cost is likely to be lower. If the risk items become real prob-
lems, schedules often slip and costs run up.

The decision to use computer hardware in the robot design can decrease the cost of the
project in various ways. The following section illustrates a few ways to make this a reality.

Leverage Existing Technology
“If I have seen further, it is by standing on the shoulders of giants.”

Sir Isaac Newton (Figure 3-2), cited in The Oxford Dictionary of Quotations

Civilization advances on the strength of its history and knowledge. Humans are unique
in that we store information outside our brains, in libaries and computers. The accu-
mulated work of others can be brought to bare to solve our problems. In the case of com-
puters, engineers have made their work available in the form of archived software and
printed circuit hardware. Each can be rapidly and inexpensively reproduced for our use.

Computer hardware is available in various forms. We can purchase complete com-
puters at stores, but these tend to be too bulky to fit into a robot. We can purchase

COMPUTER HARDWARE 75

FIGURE 3-2 Sir Isaac Newton
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printed circuit cards from distributors and place them inside the robot. We can also pur-
chase computer chips from distributors and build our own printed circuit cards, a diffi-
cult proposition for the casual robot designer.

We can purchase complete computer systems on a card, which will accept our soft-
ware and provide connectors for the signal lines we need to control the robot. This is
often the most economical method of integrating computers into the design, unless large
quantities of robots will be manufactured.

The companies that sell computers have invested millions of dollars to make their tech-
nology available for our use. We gain time, dollars, and reliability by sharing and taking
advantage of their effort. Because the technology has been made so readily available to
others, many third-party designs are also available for us to use, such as the following:

� Third-party hardware Most computers have connectors on them that enable
us to use the “bus.” We’ll define the term later, but suffice it to say, a bus allows
third-party companies to design hardware that will plug right in to the computer.
Dozens of printed circuit boards (PCBs) and other conveniently packaged cir-
cuitry are available.

� Third-party software It’s not unlikely that other companies have written soft-
ware we can use. If the computer we choose is “special purpose” (to be defined
later), then several companies have probably written software that takes advantage
of the special features of the computer. We can purchase this software and use it
in various ways:
� Freeware Often an author of software will make it freely available for others

to use. One can search for “freeware” on the Internet, qualified by words that
describe the software needed. Sometimes the author will ask for attribution or
have other requirements.

� Shareware Shareware is much like freeware, except the author often requests
payment if the shareware is used in a robot. One can search for shareware in the
same manner as freeware and one should read the restrictions very carefully.
Make copies of the author’s requirements and save them if questions should
arise later. Searching for shareware takes some time, but it can be a very valu-
able endeavor. If nothing else, it can tell us how difficult our software effort
will be. If it’s easy to write and valuable, somebody else will have written it
already. If it’s hard, nothing remotely close will be available in shareware. We
can also discover shareware that comes close and, along with it, the authors who
might be employed to modify it for our project.

� Licensing Large software operating systems, tools, and application software
usually have licensing requirements. Contact the company that sells the soft-
ware directly for information.

76 CHAPTER THREE

03_200256_CH03/Bergren  4/17/03  12:27 PM  Page 76



Speeding Up Engineering
Using computers within the robot obviates the need for full and detailed planning.

Now I’ve done it! Of all people, I advocate planning as a time-saving effort that is
well worth engaging in. The truth is, some projects are too difficult to plan all the way
through in great detail. But if we can be reliably assured at the start that our computer
will give us the flexibility and horsepower we need for unforeseen circumstances, we
can proceed without full planning.

Putting a computer in the system brings the following benefits to the engineering
schedule:

� The overall engineering effort can be partitioned. If we have more than one per-
son working on the robot, the work can be divided and executed in parallel. One
person can concentrate on the hardware while another person starts on the soft-
ware. The hardware does not have to be finished before the software can start. The
programmer can work on a board similar to the one in the robot.

� Changes in the specification of the robot can be made along the way with some
confidence that the new requirements can be accommodated in just the software.
It’s much easier to change the software than to change a hardware design.

� The design can be changed as needed for future maintenance even after the robot
is completed.

On the lighter side, one way to speed up engineering is to make a contest out of it.
The following URLs show just how fast things can get done if we would just apply our-
selves with diligence to an engineering problem:

� http://kennedyp.iccom.com/text/Playing_with_fire.txt
� http://home.att.net/~purduejacksonville/grill.html

Computer Architecture
Computers were designed to perform arithmetic calculations rapidly in a repeatable
manner. There are many different ways a computer can be constructed and this section
covers many of the different architectures that exist.

TYPES OF COMPUTERS

Let’s assume, for the moment, that we’ve decided to put a computer into the robot.
Although many general-purpose computers are available, it makes sense to take a look
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at the special-purpose computers first. It’s likely we’ll be choosing a general-purpose
computer for the robot, but special-purpose computers can bring many advantages to the
design. Before we take a close look at the architecture of the general-purpose computer,
here is a quick tour of the basic architectures of some special-purpose computers.

Analog Computers

Webster’s dictionary defines analog as “something similar to something else; a mecha-
nism in which data is represented by continuously variable physical quantities.” Analog
computers are commonly perceived as a throwback to the early days of computing
machinery. Even now, all electronic computers use analog electronic signals to support
their calculations. General-purpose digital computers, however, restrict the analog elec-
tronic signals to just two voltage levels representing binary 1 and binary 0 in an effort
to gain speed. Analog computers have no such voltage restrictions for signals. Instead,
signals vary throughout the range of voltages that the analog computer electronics can
support. A single analog signal can directly represent, for example, the speed of the
wind from 0 to 255 mph. A general-purpose computer needs eight signals (28 � 256)
to represent the same range of values for the wind.

Analog computers use analog electronics, such as operational amplifiers, to build cir-
cuits to simulate the behavior of complex systems. They are especially good at simu-
lating systems that are governed by differential equations. The second-order control
system described elsewhere in the book is a prime example. With just one operational
amplifier, an analog computer can fully simulate the same curves and parametric con-
trols we have already looked at. The front of an analog computer looks like a giant
switchboard with lots of places to plug in wires.

To program an analog computer, an engineer uses patch wires to plug together the
required building blocks. Knobs on the analog computer can be rotated to enter the val-
ues for the desired frequency and damping. The engineer starts the computer and a
meter needle shows the resulting curve over the span of a couple of seconds of simu-
lated time. In the example of our robot’s second-order system, overshoot is evident if
the meter needle goes too high before settling down. Ringing can be seen as the oscil-
lation of the needle back and forth while it settles down.

Analog computers have dropped by the wayside for two basic reasons:

� A general-purpose computer can be programmed to simulate an analog computer,
obviating the need for the analog hardware.

� General-purpose computers can be programmed in different ways to solve the
same problems. Instead of simulating the analog computer (which simulates the
real-world problem), a general-purpose computer can be programmed to simulate
the real-world problem directly.
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More information about analog computers can be found at www.science.uva.nl/fac-
ulteit/museum/AnalogComputers.html and at www.play-hookey.com/analog. The
Analog Computer Museum, dedicated to the history of analog computers, is at
http://dcoward.best.vwh.net/analog/.

Neural Networks

One of the finest computational engines known to exist is the human brain. It can solve
most complex, real-world problems much faster than a general-purpose computer,
albeit with less precision. Electronic computers are best suited to problems requiring
arithmetic capability and blinding execution speed, such as forecasting the weather. But
they are not good at solving problems requiring judgment or experience. The human
brain has the experience and “wiring” to take on problems that it has never seen before
and to solve them with speed and reliability. The parents of teenagers might argue with
this last statement, but they have never tried to live with a teenage robot struggling with
its computer’s programming so it can survive puppy love. Be assured, parents would
rather deal with a human teenager who, believe it or not, has amazing abilities com-
pared to a computerized robot.

So what is a neural network? Ever since humans first grasped the structure and pur-
pose of the human brain, they have dreamed of building an artificial brain. Many
designs for such a brain have been put forth, including neural networks. First, let’s look
at the human brain.

Brain cells, called neurons, are connected together in a vast array of tissue within the
brain. They communicate electronically with one another over neural connections called
synapses. This allows neurons to exchange information with nearby neighbors. Neurons
retain information (dubbed memory) chemically and electrically within the cell body
(see Figure 3-3).

The memory of a specific spring day, for example, might be spread out over a vast
array of neurons, which govern smell, sight, hearing, motion, and so on. The memory
of the spring day is distributed throughout the brain. Memories can be imperfect and
they can fade as individual neurons begin to lose their individual memory of the day.
Memories are stored almost like a photo spread out over the fabric of the brain. Neurons
might store more than one memory at the same time. This is why the remembrance of
one thing, like a spring day, might evoke the memory of another experience, like the
ice-cold water of a stream. A human, prodded to remember the spring day with the noise
of a brook, would likely dredge up the memory of stepping into a noisy, icy brook. The
fact that noise was in both memories ties the memories together. The human has learned
to be suspicious of brooks on spring days; they might be icy.

Learning is something general-purpose computers are not good at. Some neural-
network computers are designed to mimic the learning ability of the human brain. They
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are exposed to a series of situations and gradually learn how to deal with them. Neural-
network computers are generally designed with individual “neurons” that can commu-
nicate with one another, especially within their immediate vicinity. They are arranged
in rows and banks of neurons; an example is shown in Figure 3-4.

The results of each layer are fed into a series of communication units that perform
calculations and reroute information to other neurons. The flow of information is shown
in Figure 3-4. A series of real-world events is fed into the inputs at the top; the neural
net processes the inputs and generates responses out the bottom. The results are scored
(by an experienced person) and the score is fed back into the neural network at the top.
The network then readjusts its communication units so it will do better next time.
Certainly, the network will do better the next time it sees the very same events fed into
its inputs. But oddly enough, it often does better on new events it has never seen at its
inputs before. As such, it is learning.

Neural networks can be built in many ways. One researcher took a silicon substrate
(a slab used to build computer chips), hollowed out pits in the substrate, put neurons
into the pits, and allowed the neurons to communicate by connecting synapses.
Computer circuitry was etched in other areas of the substrate. The entire circuit ran on
a combination of glucose and electricity.

Neural networks can be built from hardware (using computer chips) or they can be
simulated in software. There have been many successful applications of neural network
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FIGURE 3-3 Human neurons communicating across synapses
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software in systems that must develop “judgment.” One application has been the pre-
diction of credit card fraud. By exposing the neural network software to many credit card
applications and then telling the network which customers defaulted later, the network
is trained to scan new applications and reject those customers who might default later.

Here are some URLs for further study about neural networks:

� www.emsl.pnl.gov:2080/proj/neuron/neural/what.html
� http://vv.carleton.ca/�neil/neural/neuron.html
� www.cs.stir.ac.uk/�lss/NNIntro/InvSlides.html
� http://hem.hj.se/�de96klda/NeuralNetworks.htm

Special-Purpose Processors

The primary advantage of a computer is its blinding speed. It can execute many millions
of instructions every second. But some tasks require the processing of truly massive
amounts of information. These applications require the addition of even higher speed
hardware to process the information. Such high-speed hardware is specifically designed
to process the information at hand, but it can perform no other function. The high-speed
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FIGURE 3-4 One model of a neural network computer
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hardware is integrated directly on the chip with the rest of the computer hardware. We
can find special-purpose processors among the following supplier groups:

� Application-specific integrated circuits (ASIC) vendors If we cannot find the
specific special-purpose computer we desire, we can make one! Massive amounts
of development dollars are required, so our robot application would have to have
a really high sales volume to even consider this. Advanced Risc Machine (ARM)
computer cores can be paired with special-purpose circuitry and put on individ-
ual ASICs.

� Fabless semiconductor companies Many very small computer companies
build special-purpose computers. Usually, they go to ASIC vendors to make their
designs into chips, but they have done the work and spread out the costs among
many customers. Find them in electronic design magazines and at conventions.
Consider searching for them on the Internet using the special-purpose function as
one of the keywords.

Many special-purpose functions have been integrated into computer circuits and
brought to market. The following special functions are available from several suppliers:

� Wireless communications Chips exist that can convert and convey radio fre-
quency (RF) data signals directly into the computer circuit. These chips are used
in pagers, phones, radios, global positioning systems (GPSs), RF identification
tags, smart cards, and so on. If the robot application requires special-purpose com-
puters with similar capabilities, consider looking at the suppliers in these markets.
Be aware, however, that few of these chips are available in small quantities. They
are also difficult to apply.

� Internet communications Many computer chips are available with integrated
local area network (LAN) interfaces that are used to connect to the Internet.
Further, some of these computers have integral software stacks that can process
the flow of Internet data in real time inside the chip. This sort of processing can
greatly speed up a robot if its design requires a great deal of information flow over
the Internet Protocol (IP).

� Digital signal processing (DSP) DSP circuitry (to be defined shortly) is used
to process information in ways most general-purpose processors cannot. Study the
following DSP section. If a DSP is needed, consider
� Texas Instruments’ OMAP DSP processor at www.TI.com
� Analog Devices at www.analog.com

� Analog controllers Many special-purpose processors have analog circuitry
right on the digital chip. One buzzword for this type of circuitry is mixed signal.
Such a technology has several advantages, but the leading one is cost. If the chip
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can support all the requirements of our robot without further analog design effort,
we can come out ahead. Consider Analog Devices’ mixed signal family at
www.analog.com/technology/dsp/mixedsignal/index.html.

� Display systems Many robots require control panels or information displays. It
is not difficult to integrate a liquid crystal display (LCD), even a large one, into a
computer circuit these days. Many computer chips can support LCDs directly.

� Low-power units The handheld personal digital assistant (PDA) market, along
with phones and pagers, has spawned a whole series of computer chips that can
operate on very low levels of voltage and power. If the power for our robot’s com-
puter system is a significant part of the power budget, then consider low-power
computer systems. Many other techniques for saving power in computer systems
can be used as well. We’ll visit power control later in the book.

� Game units It’s a little-known fact, but most computers wind up in games.
That’s right. The sheer number of computers going into toys dwarfs the other prac-
tical uses. These are generally very small computers that cost next to nothing.
They’re found in toys like Furby, digital pets, talking dolls, and so on. It is not easy
to deal with the suppliers of these computers; they demand huge orders.
A look under the covers of a small robot made with such a chip is provided at
www.phobe.com/furby/. Furby and Furbies are the intellectual property of Tiger
Electronics.

Parallel Processors

Parallel processing is not new. The method stems from the realization that many com-
putational problems do not have to be executed one step at a time. Often, a computa-
tional problem can be broken down into problems that can be executed simultaneously
without fear that the work done on one problem will obviate the need for work on the
other problem. In WWII, the atomic bomb project employed dozens of people who sat
at mechanical calculators performing computations in parallel.

Most modern general-purpose processors (like those from Intel or Motorola) already
contain more than one computer within the chip. This is done because almost every
computational problem can benefit at least in some ways from parallel processing.

Consider for a moment the work done in the following software pseudo-statement: If
A, then B, else C. The serial way to process this statement is to compute A, and then com-
pute either B or C. With three processors at our command, we could compute A, B, and
C all at the same time. When this single phase of computation is complete, the computer
merely chooses (based on A), either B or C as the answer. This can save one computer
cycle. It’s true that a third of the work is wasted, but the program runs twice as fast.
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The technique in the previous example cannot be extrapolated to a much more com-
plex computational problem. As the statements in complex programs grow in size, the
number of “branches” increases rapidly. In the previous If statement, only 1 branch was
used, so we only needed about 21 processors (3 actually). In more complex programs
with many branches, the number of processors needed grows very rapidly, making par-
allel processing impractical. The way to avoid this problem is to restrict the number of
applications we try to tackle with parallel processing.

Many classical computational problems can still be partitioned naturally into paral-
lel tasks. Consider weather processing or vision systems (for the robot). The field of
view can be partitioned into areas, and a single processor can be assigned to each area
in an array. Each processes the information coming into its area. Generally, the proces-
sors can communicate with their neighboring processors. In a weather application, each
processor updates the weather in its small area (which may only be a few hundred
meters square). It communicates with its neighboring computers to inform them about
relevant events, such as moist air moving into their area. In such a way, weather fore-
casts have been made much more accurate and timely. The array processor has the gen-
eral structure shown in Figure 3-5.

Such an array can be built using general-purpose processors, but companies have cre-
ated processors specifically designed for parallel processing. They contain communi-
cation structures and special instructions that make parallel processing more efficient.
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FIGURE 3-5 Parallel processors can divide up calculations for weather
prediction.
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Often, these companies support operating system software and compilers that make par-
titioning and hosting an application much simpler.

Here are a couple of URLs for further study on parallel processing:

� www-unix.mcs.anl.gov/dbpp/text/book.html
� www.afm.sbu.ac.uk/transputer/

Digital Signal Processing (DSP)

DSP chips are basically special-purpose processors designed to serve a particular class
of computational problems. The central feature common to most DSP chips is a MAC,
which stands for Multiply and Accumulate. And no, sorry, this has nothing to do with
having lots of kids and living in a small house!

DSP processors are specifically designed to rapidly multiply two numbers together
and add them to a third (accumulate). Several types of arithmetic problems are well
served by such a processor:

� Taylor series In 1712, mathematician Brook Taylor (see Figure 3-6) wrote a for-
mula that can be used to approximate a function. Where f(x) is a function (with
certain continuity restrictions) and fn(x) is the nth derivative of f(x) with respect
to x, then f(x) can be approximated in the vicinity of x � a by the formula

f 1x 2 � f 1a 2 � f 1 1a 2 � 1x � a 2 � f 2 1a 2 � 1x � a 22>2! � ... � f n 1a 2 � 1x � a 2n>n!
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plus a remainder. This formula provides a standard way to approximate and com-
pute functions like sine and cosine. It’s the way compilers set up the computation.
It involves several multiply and accumulate steps. Each term in the equation is
another MAC. Generally, the remainder can be made arbitrarily small by carrying
out more terms (making n larger). A tutorial on the Taylor series can be found at
www.wikipedia.com/wiki/Taylors_theorem.

� Finite Impulse Response (FIR) filters These are generally used for filtering a
continuous stream of information that represents audio or video. Consider the
reception of an audio signal in the presence of a strong 1 kHz interfering noise
source. We would like to remove the 1 kHz noise from our signal (as best we can).
If the audio signal is digitized, it can be fed into a FIR filter specifically designed
to filter out 1 kHz signals. The FIR filter method gives us a way to do this in as
precise a manner as required, governed only by cost.
Suppose we want to filter the signal x(t) to produce signal y(t). The generalized
formula for an n-stage FIR filter is given by

where h1 . . . hn are the coefficients of the filter. We’ll explain the math in a later
chapter, but we can see that this formula is also a series of MACs. A web site on
FIR filters can be found at www.wwc.edu/�frohro/qex/sidebar.html.

� Fourier Transforms Fourier Transforms were developed, as we might guess, by
Joseph Fourier (see Figure 3-7) in the early 1800s. The transforms are a way of
representing any function, within certain bounds, as the superposition of a series
of pure sine waves. In this way, a function is broken down into a series of pure fre-

y1t 2 �  h0 �  x1t 2 � h1 � x1t � 1 2� h2 � x1t � 2 2 � ... � hn � x1t �  n 2
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quencies (multiplied by coefficients). A good drawing of superimposed sine waves
can be found at www.yorvic.york.ac.uk/�cowtan/fourier/ftheory.html.
The Fourier Transform has many variants, including the Fast Fourier Transform
(FFT) and the Discrete Cosine Transform (DCT). These transforms are commonly
used to remove noise and unwanted frequencies from an image or signal as fol-
lows. The image is transformed into a series of discrete frequencies. Then the
unwanted frequencies are erased (or the wanted frequencies are picked out). Either
way, the wheat is separated from the chaff. Then the inverse Fourier Transform is
computed to reconstruct the image, which is clearer and easier to understand than
the original. Suffice it to say, the FFT, and other transforms like it, use a series of
MAC operations.
In robots, FFTs can be used to identify objects in the field of vision. If FFTs are
performed on the digitized field of view, the robot’s DSP computer can look for
the FFT signatures of specific objects, rejecting all those objects that don’t con-
form. Interesting information on Fourier transforms can be found at www.
yorvic.york.ac.uk/�cowtan/fourier/fourier.html and at www.medialab.it/fourier/
fourier.htm.

Notes on DSP

DSP processors have special purpose hardware that speeds up the computations they must
perform. These hardware structures povide both increased accuracy and faster execution.

Arithmetic We’ve seen that one of the central features of a DSP processor is the MAC,
a hardware structure capable of executing a multiplication followed by an addition. This
arithmetic operation is performed on a digital representation of a number. Numbers can
be represented within a computer in a fixed-point format or a floating-point format. Be
aware that DSP processors come in these two versions and that the floating-point DSP
processor is much more expensive.

Fixed-point numbers are familiar to us as integers. A 16-bit fixed-point number can rep-
resent a of 216 � 65536 numbers. This range covers about 5 decades of range (< 100,000).
But there are some problems with fixed-point format. If we were to multiply two fixed-
point numbers like 60,000 � 50,000, the answer could not be represented in 16-fit fixed-
point format.

To solve such an overflow problem, we temporarily can invent a “16-bit floating point”
format. Such a format is impractical, but illustrative here. Many people are familiar with
scientific notation where a number can be represented as 2.71 � 1012 , a very large num-
ber. Suppose we take our 16-bit number and divide up the bits differently, using 10 bits
as the “mantessa” to represent the 2.71 number and 6 of the bits as the “exponent” to
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represent the 12 numbers in our example. This gives our floating-point numbers a range
of about 210 � 106, much larger than 65536. However, the accuracy is only 210 � 1024
instead of 65536. Our multiplication example from above (60,000 � 50,000) can now
be done because it does not overflow 6 � 104 � 5 � 104 = 30 � 108 = 3 � 109.

The floating-point formats used in computers are a little different than this. Please
visit the URLs for a better description.

Floating-point gives us a wider range of numbers over which the arithmetic can take
place. The differences between these two number formats are explained at web sites
www.research.microsoft.com/�hollasch/cgindex/coding/ieeefloat.html and http://ee.
tamu.edu/matlab-help/toolbox/fixpoint/c3_bev2.html.

DSP Hardware Many of the arithmetic problem domains we’ve looked at involve
many MACs. The Taylor series, FIR filters, and FFTs all require the repeated multipli-
cation of coefficients by data values to form a long summed-up equation. DSP proces-
sors have memory-addressing structures and control hardware that significantly speed
up such repetitive operations. In math parlance, they are well suited for vector and
matrix arithmetic. The most sophisticated also employs parallel processing to speed up
these calculations.

DSP processors are often used to process continuous streams of information such as
audio, video, or data from an RF receiver. The data stream never stops and must be
processed at all times. Accordingly, DSP processors can have buffering built into their
processing streams and avoid traffic jam interruptions that can stall a general-purpose
central processing unit (CPU). Think for a moment about a desktop computer. How
often does it lock up while performing some housekeeping task? Such lockups are not
allowed in the processing of continuous stream data, and DSP processors can make sure
that does not happen. If the robot needs to process continuous streams of media-type
data, consider a DSP processor as an alternative.

Here is a PDF file and a few web sites on DSP processors and what they can do:

� http://bwrc.eecs.berkeley.edu/Publications/2000/Theses/Evaluate_guide_
process_archit_select/Dissertation.Ghazal.pdf

� www.bores.com/courses/intro/chips/index.htm
� www.wave-report.com/tutorials/DSP.htm
� www.jovian.com/tutorial/demos.html

General-Purpose Processors

The primary advantage that general-purpose processors have is their speed. They can
perform simple operations with blinding speed, and so complete great amounts of work.
How do we go about finding the right one for our robot?
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Computers came into being during World War II. They were made using vacuum
tubes and were built in an effort to break enemy codes. Here’s a nice site covering the
history of computers: www.eingang.org/Lecture/index.html.

Not surprisingly, the best choice for the robot is the cheapest computer that gets the
job done. Many design variations exist among the hundreds of computers that are avail-
able. To choose the best computer for the robot, we need to be well acquainted with the
innards of the machines. This will give us a better perspective when the time comes to
choose.

Computers have basic characteristics and architectures that have been worked out
over the years. We’ll take a look at each in turn.

WORD SIZE

Computers have, within them, the equivalent of a natural word size. They store and
manipulate digital data that is represented by n bits, each representing a 1 or 0. An 8-bit
computer has 8-bit words that store numbers from 0-255. A 16-bit computer has words
that store numbers from 0-65535. The word size of a computer tells you the innate capa-
bility of the computer to manipulate numbers easily. The larger the word size, the faster
the computer will be able to handle calculations involving large numbers. The first mod-
ern computer chips were 4-bit machines. I guess marketing didn’t like the sound of sell-
ing 2-bit computers! All the internal structure of the 4-bit computers (the details of
which we’ll get to later in the chapter) were 4 bits wide, just enough to store the num-
bers from 0 to 15 decimal. That’s great for counting the moons of Neptune (8 moons),
but not Jupiter (47 moons and counting). To count Jupiter’s moons, a 4-bit computer
would need to use 2 of its words (8 bits), which would give it a capacity to count 256
moons. A 4-bit computer can still do the work, but it will be slower than an 8-bit com-
puter at the same job because it has to do at least twice as many operations.

Modern microprocessors that we could use in our robot range between 8- and 64-bit
word sizes. The 8-bit computers are generally well suited for most simple robot calcu-
lations and control system loops, but it’s not a very expensive proposition to look at 16-
and 32-bit computers. Computers with 64-bit word lengths begin to get pricey. One
must look at a few central considerations when choosing the word length of the com-
puter for the robot. Most robot designs have 8-bit processors to save power and money.

� Data length How well does the word length of the computer match the data
streams that the robot will have to deal with? If the computer is gathering vision
data in 16- or 24-bit words, consider using a 32-bit computer. It is not unlikely that
we’ll have to perform 32-bit arithmetic anyway. If all the data gathering inside the
robot generates 8-bit data, consider an 8-bit word length. But look closely at the
arithmetic required. Be aware that even a simple addition of data can engender
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the requirement for extra bits of word length. If we add two 8-bit numbers together,
we may well need a 9-bit number to store the result! Stepping up to the next largest
word length computer is often a safe bet; a 16-bit computer might be needed.

� Computer horsepower Even a tiny 4-bit computer can perform all the calcula-
tions required in a robot control system. The real question is, can such a 4-bit com-
puter do it fast enough to keep up with the requirements of the robot? If we design
the robot very carefully, we can minimize the requirement for a lot of computer
horsepower. We can go into how to do that in a later chapter of this book. The point
is, if we’re sizing the computer to the task at hand, we can gain a lot by minimiz-
ing the task. Then we only have to pick a computer large enough to do the job.

� Memory size Often, the word width of the computer dictates the word width of
the memory bank. A 32-bit computer works best with a 32-bit-wide memory mod-
ule. As such, the word length can also affect the size and cost of the memory.

POWER

Many robots are battery powered. We’ll tackle power considerations later but should
mention it here. To save power, look for the following features in a computer:

� Lower-voltage electronics
� Low-power operation
� Support in the operating software for low-power states
� Lower-frequency operation (if we can stand the slower operation)

MEMORY SUPPORT CIRCUITRY

Computers require memory to store their programs and data. The memory can be
attached to the computer in several different ways. This section outlines some of those
options.

� Stored program Many questions have been asked about the program software
itself. Where will it be stored? Flash memory and disk are two popular methods.
Flash memory is more reliable physically, which is important if the robot will be
mobile. We’ll look at both types of memory shortly.
Also, how will the program be changed? It’s always a good idea to maintain the
ability to upgrade the software in the robot. That means we need a method of get-
ting the program information into the robot.
This can be done in a number of ways, including through a communication chan-
nel. If the robot has a communication channel to the outside world, we can encode
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commands into the channel that will enable the reprogramming of the robot’s soft-
ware. If the robot is at a remote location (like Mars), we would have to do this very
carefully. The accepted technique is to trigger the download command, pull in
blocks of program data with full error detection and correction, store the program
away in block form until it has all arrived, and then blast it into flash memory or
disk. If possible, put paged flash memory in the robot so a boot program will
always exist and will not change. The boot program can download and burn pro-
gram flash. That way, we have a minimal chance of corrupting the program to the
extent that we have no way to recover.
Another thing to remember about downloading over a long distance is that often
significant communication delays occur. The downloading protocol has to survive
all sorts of communication flaws, including long delays in transmission time. In
the case of one of the Mars landing missions, the mobile robot could only be
reprogrammed about once a day. In addition to communication delays, the repro-
gramming team had to put up with decreased communication bandwidth, planet
rotation, sunspots, and so on. In general, make the communications protocols for
the robot bulletproof. Expect the unexpected. Martians might even show up and
stand in front of the antennae!
Sneaker Net is another way of getting the program information into the robot. If
the robot is accessible, engineers can walk up to it and make the new software
changes.

� Memory addressing range Computers have instruction sets that encode
addresses; the instructions are stored in memory as a series of bits. This allows an
instruction to directly access a memory location for reading, writing, or modifi-
cation. To encode a memory address into an instruction, the address must take up
some bits within the instruction. Often, some of the bits in the instruction will ref-
erence another register with many more bits to fill out the address. The final,
resolved address is called the effective address. The number of different memory
addresses that can be accessed at any one time depends on the number of bits in
the effective address.
Different instructions of the computer will be able to access different ranges of
addresses. By and large, the word length of the computer sets the largest address
range. A 32-bit processor generally can address 232 bytes (about 4 billion bytes).
Processors with 8 and 16 bits generally use a 16-bit address range for 65K bytes.
The memory addressing range is important because it restricts the number of
memory bytes that the computer can see at any one time. If our robot’s software
is looking at many thousands of bytes at any one time, consider whether a 16-bit
addressing range is sufficient. It does not cost a vast amount of extra money to
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step up to a 32-bit computer. If the computer has a memory management unit
(MMU), it is possible to step up to a very large addressing range and to support a
vast memory.

� MMU An MMU is a set of registers within the computer chip that enables the
computer to access a vast memory array. Let’s use a visual image to describe what
an MMU does. Think of the memory array as a vast outdoor wheat field of bytes.
Think of the computer as being inside a house with a window looking out on the
field of bytes. The computer can process instructions to manipulate all the bytes
it can see out of the window, but not the ones it cannot see. Now let’s make a mag-
ical MMU that can move the window around the wall of the house. The MMU
stores window locations and can remember a bunch of different locations for the
window (called pages). In fact, each user of the computer can have his or her own
window location and, as such, a private memory space out in the field of bytes. In
this way, the computer can support multiple users without the difficulty of keep-
ing them all apart. If only the operating system can manipulate the MMU, then it’s
possible to keep the users secure from one another so they cannot disturb each
other’s field of bytes. In a robot design, this can come in handy if multiple groups
of engineers reprogram the robot’s functions. It is possible to keep them from
interfering with one another.
� In addition, if a user needs more memory than the addressing range allows, a

secure portion of the MMU can be made available to the user. The user can con-
trol multiple pages of memory to get access to more memory. The only catch
is that the pages cannot all be accessed at the same time without altering the
MMU between accesses.

� So how does an MMU work? Basically, the computer must come up with extra
memory bits to add to the largest address range, which can be done in several
ways. In the first place, a few extra bits can be added by allowing multiple users
to access the overall memory. Accommodating 32 users would add 5 more bits.
Most computer architectures enable each user to control a few more bits. The
net result is that the MMU structure, inside the CPU, looks just like a small
memory. The address signals of the MMU memory is made up of the extra bits.
The data stored in the memory is generally the effective address of the user’s
memory page. In addition, the MMU memory contains security bits that spec-
ify what sort of operations are allowed on the memory page. It is possible to
disable writes and reads, and to restrict access to different classes of users.
To recap, an MMU enables the computer to access a much larger memory than
the addressing range ordinarily does. In addition, an MMU can provide secu-
rity for multiple users. In general, unless the robot design is very complex with
a large operating system and many users, an MMU won’t be of much use.
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MEMORY CHIPS

Oh yes! Most computer memories actually contain memory chips. These are integrated
circuits that contain thousands or millions of individual bits that the computer can read
and write. A few different types of memory are available, and they all bring different
benefits to a robot project. It makes sense to know about the most popular types of
memory and what they can do for the robot project.

Flash Memory

Every computer needs a place to store its operating program. The program must not van-
ish when the power goes off. With current technology, almost every computer contains
some flash memory, which contains the initial software that the computer runs when it
boots up. The same flash memory can contain the bulk, or all, of the computer’s software
program. Flash memory’s primary advantage is that it retains its contents in the absence
of power, making it nonvolatile memory. We won’t go into the physics of it here.

Flash can be programmed when the robot is built and will retain the program through-
out the life of the robot. Most flash memory can be reprogrammed in the field if the
program must be changed. Beyond just storing the program of the computer, the flash
memory can be used to permanently store other data the robot may gather, almost like
a disk system.

One caveat, however, is that many types of flash memory can only be written to a
specific number of times before failing. The flash memory chip specifications will
detail how many times the flash can be written to. So if a need exists for nonvolatile
memory storage now and then, consider putting flash memory into the robot.
Sometimes this sort of memory can be added to a robot’s computer using Personal
Computer Memory Card International Association (PCMCIA) cards, which we’ll talk
about in a bit.

Static Memory

This is a type of volatile memory, which is relatively simple to use from an electrical
engineering perspective. It does not require complicated timing. However, static memo-
ries are generally smaller for equal dollars and have fallen out of favor. They generally
use two to four transistors just to store one bit of memory, whereas the cheapest
(Dynamic Random Access Memory [DRAM]) memories use just one transistor to store
a bit. One thing static memories are good at is battery backup. Static memories can be
made nonvolatile with the addition of a battery. They are often teamed up with lithium
or other such batteries that have a long shelf life. Some types of static memories consume
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very little battery power when they are off and can retain critical data for long time
periods.

Dynamic Memory

Most computer boards these days use flash memory for the nonvolatile boot program
and dynamic memory for the bulk of the volatile memory space. It’s not uncommon for
the entire computer program to be stored in flash memory, transferred to dynamic mem-
ory, and executed from there. The reason is execution speeds out of dynamic memory
are often faster. To understand why, we have to go into the physics this time.

DRAM behaves the way it does for one primary reason: It only uses one transistor
to store a bit. It does this by taking advantage of some of the capacitance under the
transistor. A capacitor is basically a place to store electrons. The number of electrons
in the capacitor determines whether a binary one or zero exists in the bit. A data bit,
in the form of voltage, can be moved to the transistor. Then the transistor can put the
data into the capacitor just by turning on. If the data, represented by voltage, is a one,
then electrons flood into the capacitor. If the data is a zero, the capacitor is drained of
electrons. When the time comes to read the data bit, the transistor turns on and the
number of electrons in the capacitor is inspected. If enough of them are present, the
computer reads a one.

DRAM is very dense because it only needs one transistor per bit, thus saving space
on the integrated circuit itself. However, some problems occur with this memory struc-
ture. For starters, the very act of reading the bit destroys it. This is called destructive
readout. Immediately after reading the bit, the memory support circuitry within the
computer must rewrite the data bit back into the capacitor.

Another problem happens as well. Once a bit is written into the capacitor beneath the
transistor, it begins to deteriorate. The electrons in the capacitor begin to leak away one
at a time. It only takes a few milliseconds before the integrity of the data bit can be
called into question. Accordingly, many of the memory chips have circuitry within them
to automatically read every bit and rewrite it every few milliseconds. This process is
called refresh. Some computers perform this operation using refresh circuitry within
the computer chip itself. Be very careful to think through the refresh scheme when
choosing memory for the robot. At least one of the chips must handle the refresh task.

One of the other disadvantages of DRAM is the complex timing required for the sig-
nals. We’ll get into how DRAM works in a minute, but the complex timing of the sig-
nals brings up two problems. First of all, almost no way is available for putting the
computer to sleep to conserve power. With all the signals running all the time, the
DRAM generally cannot go to a low-power mode. If a low-power sleep mode is impor-
tant for the robot design, consider SRAMS instead. Second, if we’re building our own
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computer from scratch, be very careful to analyze the timing of the DRAM signals. If
they are even off a little from the requirements, errors can occur that will be hard to
isolate.

To use DRAM properly, we have to look into its internal construction. DRAM is
commonly built as an array of bits. If a million bits (1,024 � 1,024 � 1 million) are
inside the DRAM, the bits may well be arranged as 1 large array with 1,024 columns,
each of which has 1,024 bits in a row. The address lines coming into the DRAM gen-
erally are timeshared. To address 1 million bits inside the DRAM, 20 address bits are
required (220 � 1 million). Instead of having 20 address pins on the DRAM, it likely
only has 10, and they are used twice in the following manner.

The first 10 bits of the address are presented to the DRAM. These 10 address bits can
address an entire row of bits within the memory array. This cycle is called RAS for Row
Address Select. During this time period, the entire addressed row of 1,024 memory bits
is read into a RAS read register inside the DRAM. Next, the computer chip provides
the remaining 10 address bits at the address input pins of the DRAM during what’s
called the CAS cycle for Column Address Select. During the CAS cycle, only one of the
1,024 memory bits from the RAS read register is sent to the DRAM output pin. This is
the RAS/CAS cycle. This type of architecture saves a great deal of space and circuitry
inside the DRAM and has become a standard in the computer industry.

The timing of all the DRAM signals must be very precise to avoid errors. Most com-
puter chips on the market will drive DRAM directly with default timing known to work
with contemporary DRAM. Most computer chips also have registers within them that
can be used to change the default timing on the computer chip’s DRAM interface pins.

One of the interesting benefits of the RAS/CAS cycle is that, in our example, 1,024
bits are fetched at the same time during the RAS cycle. It’s only a preference that we hap-
pen to want only one bit during the CAS cycle. The truth is, if we run multiple CAS
cycles after the single RAS cycle, we can fetch many bits out of the RAS read register.
This method of using DRAM is generally called page mode, and not all DRAM supports
it. The next section dealing with cache memory will illustrate a good use for this feature.

DRAM comes in many different styles, each with a different acronym. They each
have different timing and power requirements. For further study, check out www.
arstechnica.com/paedia/r/ram_guide/ram_guide.part1-1.html and www.howstuffworks.
com/ram.htm.

CACHE MEMORY

Great, just when we thought we had this memory thing licked, along comes another
kind. Cache memory (pronounced “cash”) is a small amount of memory within the
computer chip that greatly speeds up the execution of a program. The central idea is that
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the DRAM memory chips external to the computer chip take a good long time to deliver
their contents to the inside of the computer chip, maybe 60 ns. That may not seem like
a long time, but if we consider that the computer chip may be able to execute instruc-
tions every 10 ns, it does waste a lot of time waiting for instructions to come out of
memory.

What the cache does is watch the access to external memory. If the cache control cir-
cuitry inside the computer chip believes it already knows what the contents of the mem-
ory address are, it cuts short the computer chip’s memory cycle and simply pulls the data
out of its own cache memory instead. This way, the instruction will be executed two to
six times faster. It’s easy to use cache since it’s transparent to the programmer. The cache
is simply turned on, and it automatically functions to speed up the program execution.

Many computer programs will execute in tight loops for short periods of time. The
execution of a FOR loop in C is a typical example. FOR loops will execute the same
instructions for a prescribed number of iterations. While executing in a FOR loop, a C
program will execute the same instructions over and over again. If these instructions are
put into the cache memory, the FOR loop will execute much more rapidly. As a general
rule, most programs will execute in such “local” loops a large percentage of the time.
This is the true power of using a cache memory structure within a processor. Even a
small amount of cache memory goes a long way. Generally, only the faster computer
chips have cache circuitry since only they can truly take advantage of it.

How does cache memory work? First, we’ll describe a more complex structure for
cache memory; later we’ll look at a simplification. First of all, cache memory usually
has just a few thousand words. Each of these words can contain both a full memory data
word (duplicating the contents of a DRAM memory address) and the DRAM memory
address itself. As the computer reads data from a DRAM address the first time, the cache
memory controller puts the data and the address into the cache memory at the same time.
Later, if the computer program reads that DRAM address, the cache memory recognizes
the address as a match, gets the computer’s attention, rapidly substitutes the data from
the cache, and cuts the memory access short. As the program continues to access DRAM
addresses in a small “local loop,” all the data from those addresses is also put into the
cache memory. As the program continues to loop through those DRAM addresses, the
cache memory steps forward with the data and acts to speed up the computer. When the
program moves on to another portion of the program, new data is cached.

But what happens when the cache fills up? Generally, the cache controller has hard-
ware that examines the least used cache words. When a new location is required for
cache data, the controller then selects the least used cache location, dumps the old,
unused data from it, and puts the new cache data in it.

As a side note, when data is written into memory that is also cached, the data is writ-
ten into the cache memory at the same time as it’s written into the real DRAM. That
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way, the cache data remains the same as the contents of the DRAM. An article at
www.pcguide.com/ref/mbsys/cache/func_Write.htm describes writing to cached mem-
ory locations. Follow all the links for a complete explanation.

The cache controller must recognize when it must act while the computer is access-
ing a DRAM address. The most complex method is to store the DRAM address inside
the cache memory. The cache controller must then have address-matching hardware that
can compare the computer-generated DRAM address with all the addresses within the
cache memory bank. This type of hardware is expensive and is generally known as
Content Addressable Memory (CAM). A less expensive alternative is simply to cache
only within a small address range. If the computer can cache all the DRAM data that
resides within a certain memory address range, things are simplified. The cache con-
troller need only compare the upper bits of the computer-generated DRAM address with
the address of the cached memory range. The cache memory controller and how it rec-
ognizes situations where it comes into play are discussed at www.pcguide.com/ref/
mbsys/cache/func_Mapping.htm.

Cache memory can reside in a few different places. If it’s inside the processor chip,
it’s generally termed a Level One (L1) cache. It’s the fastest and, because it’s inside the
computer chip, it’s generally the smallest and most expensive.

Board designers can also put cache memory chips between the computer chip and
the DRAM. This cache, external to the processor chip, is generally called a Level Two
(L2) cache. Sometimes the L2 cache is also inside the computer chip. The L2 cache is
slower than L1, but it is often bigger. The cache controller looks to the L1 cache first.
If the L1 cache does not have the data, the cache controller looks to the L2 cache. If the
L2 cache does not have the data, the cache controller goes to the DRAM.

The following web sites help define L1 and L2 caches. Follow all the links; there is
much more to learn:

� www.pcguide.com/ref/mbsys/cache/
� www.pcguide.com/ref/mbsys/cache/role.htm
� www.pcguide.com/ref/mbsys/cache/layers.htm
� www.pcguide.com/ref/cpu/arch/int/comp_Cache.htm
� www.computerhope.com/jargon/l/l1.htm
� www.computerhope.com/jargon/l/l2.htm

Cache Thrashing

As we’ve seen, cache memory is most effective when the computer program loops in a
small local loop, a portion of the program confined to a small number of DRAM mem-
ory addresses that can all reside in a cache at the same time. It is possible to misuse
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cache memory. Consider a program that skips around all over the place in memory. The
cache controller cannot be effective if it cannot store all the instructions in the cache at
the same time. It is continually asked to put new locations into the cache and is inef-
fective. The programmer is said to be “thrashing cache.” Say that five times fast!

Be careful in the design of the robot’s software that the program execution does not
jump around too much. In larger, more complex computer chips (such as StrongARM),
it is possible to confine the use of cache memory to specific memory ranges and thus
avoid areas of the computer program that will dump the cache without positive benefit.

By the way, cache memory can also hold and mimic the contents of flash memory
too. This is useful if the processor executes out of flash.

Cache Interaction with DRAM

We mentioned before that DRAM can be used in paging mode. When a processor with
a modern cache controller (like the Xscale StrongARM) reads a DRAM address, it does
not simply read just one instruction. Since the DRAM retrieves 1,024 (or so) bits at a
time during the RAS cycle, the processor can execute, for example, 16 CAS cycles to
fill up the cache with the subsequent words from memory. This is a very time-efficient
way to fill the cache memory. The processor is up to other things with the fetched
instruction while the cache controller is busy dragging words out of memory with page-
mode CAS cycles. The only drawback of such activity is that it makes it difficult to
monitor the actions of the processor externally by just observing the activity on the
memory address lines.

COMPUTATION AND STORAGE REGISTERS

Every computer chip is capable of performing arithmetic and logical functions. They
contain computational circuitry that can add and subtract word-length words at instruc-
tion speeds. Certainly, it’s important to analyze the requirements for the robot and the
arithmetic computations that will be necessary. We can talk about that in another sec-
tion of the book, but it’s important to note one or two things here.

First, computers contain spare, word-length registers that are used to store interme-
diate results when they are not in use. If a computation handles many different numbers
at the same time, a computer with many spare registers (termed general-purpose [GP]
registers) can often execute the computations at a faster rate. To take advantage of this
capability, we often have to take a very close look at the software and the compiler (if
one exists). Often, a compiler will automatically avoid using GP registers, preferring to
use slower memory locations instead. This is done so the compiler will be usable on
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many different computers, some of which have few GP registers. If we have specific
software routines (like loops in the robot’s control system software) that we want to
speed up, we can pay specific attention to that small area of code. Often, with C lan-
guage statements, such as the register construct, we can force the compiler to generate
code that will use the faster GP registers during computation. We still have to examine
the intermediate assembly code to make sure we are getting the results we desire.
Certainly, if the robot’s code is written in assembly code, we can force the issue much
more easily. The point is, consider the internal register structure of the computer when
picking the computer or designing the software.

Second, be advised that some computers have more computational hardware than
others. All computers have fixed-point computational capabilities, and some have float-
ing-point capabilities as well. Others, as we have discussed, have very special-purpose
compute units with DSP or communication hardware built in. Again, take a close look
at the computer requirements.

INSTRUCTION SET

An instruction set is the base language of the computer. These are generally word-
length, assembly language words that the computer can look at to understand what it
must do during the execution of a program. It does not matter whether the program is
written in C, Forth, C��, Fortran, or assembly language. The compilers and assem-
blers always must reduce the program to a series of instruction-set commands that the
computer can execute. In assembly language, they look something like this:

ADD r0, r1 (Add GP register 0 to GP register 1)
SUB r2, r3 (Subtract GP register 2 from GP register 3)

When translated to binary, they would reside in instruction words like this (to use an
imaginary 8-bit computer instruction set):

Bit 7 6 5 4 3 2 1 0
OpCode x x x x
Source register x x
Destination register x x
where the OpCodes are
0000 for add
0001 for subtract and so on
ADD r0, r1 codes as 0 0 0 0 0 0 0 1
SUB r2, r3 codes as 0 0 0 1 1 0 1 1
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These instructions are decoded at very high speed within the computer and are exe-
cuted immediately.

Years ago, computer companies built computers the size of refrigerators and they
tried to sell customers on the richness of their instruction set. The truth is, almost
nobody cares about that. People buy computers based on almost every other reason
other than this. So why should we care?

If we’re building a robot and we’re watching our budget, we should select the com-
puter carefully. Some computer chips will match our requirements better than others.
Looking at it the other way, given a more powerful computer chip, we can often make
savings by tailoring the robot’s algorithms to the power within the computer. So let’s
take a look at some of the wrinkles that have come along in instruction sets.

RISC

RISC stands for Reduced Instruction Set Computer. The imaginary 8-bit instruction set
shown earlier is similar to a RISC instruction set. The instructions are elemental and
can generally only perform one small computation at a time. RISC machines were sup-
posed to get their power from blinding speed, even compared to computers with more
complex instruction sets.

RISC computers were touted a decade ago as a major advance in computer hardware,
designed to significantly speed up computations. The technology did not, by any means,
take the computer world by storm. Many RISC computer designs are still around, such
as MIPS, ARM, and others. They generally have smaller, simpler semiconductor dies
and can be incorporated into ASICS much more easily than larger computer cores. But
they have found not found their niche because of their speed. Rather, they’ve found their
place in low-power designs and in the relative transportability of the designs. One of
the best ways to see what an RISC computer can do for the robot design is to simply
look at several other designs the computer chip has been used in.

Here are some web sites on the history of RISC computers, discussing them in
greater depth. In addition, some articles show the advantages of RISC over Complex
Instruction Set Computers (CISCs), which we will talk about shortly. Some of the arti-
cles are years old but still have a relevance:

� http://copland.udel.edu/�anita/risc.html
� www.cs.washington.edu/homes/lazowska/cra/risc.html
� www.appliedembeddeddesign.net/design_riscCisc.asp
� www.ccs.neu.edu/groups/honors-program/freshsem/19951996/utopia/risc.html
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CISC

Complex Instruction Set Computers (CISC) have been the norm since the commercial
introduction of computers. The instructions are much more complex than those in RISC
machines (hence the name). Although a CISC machine may still have ADD and SUB
(subtract) instructions, it may also have MPY (multiply), DVD (divide), ECC (error
checking and correction), and MAC (multiply and accumulate) instructions that per-
form complex calculations. A MPY instruction typically requires a series of ADDs and
SHIFTs. A DVD instruction requires a series of SUBs and SHIFTS. A MAC requires
at least an MPY and an ADD.

It can be very expensive to build the control circuitry within a computer that can man-
age the cycles in such a complex instruction. What most processor designers did was
build a uCode (microcode) engine into the computer processor. Effectively, a small,
very high-speed uCoded RISC processor would be inside the CISC processor. The
uCode program would reside in high-speed Read-Only Memory (ROM) and would exe-
cute a very short series of uCoded machine cycles to carry out the intended CISC
instruction. The uCode for an MPY x,y instruction would look very much like the
following:

uLOAD z, wordlength ; MPY instruction execution.
Loopr: uSHIFTRight x ; Shift x

uTSTskp Carry x ; Was a 1 there?
uADD x,y ; Yes, add Y to answer
uDECJmp z, Loopr ; No, loop til done
uRTN . . . ; Finished

The uCode program would execute a series of shifts and adds to accomplish the MPY.
The advantage of uCoding the instruction set is that the CISC hardware could be sim-
plified. Many CISC instructions could be coded with just a few entries in the uCode
ROM. A CISC instruction set might take longer to execute a program, but the compiled
C programs (supplied by the users) would have a smaller number of bytes.

Some uCoded processors enable end users to supply uCode, which can be executed
out of fast RAM inside the uCode engine. This feature is an attempt by the CISC design-
ers to capture some of the advantages of the RISC architecture. End users can effec-
tively make their own instructions up. This is of use if the robot has one or two simple
algorithms that must run faster. It can be very difficult, however, to write uCode. The
documentation is often not very good, and support is often worse.
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The major advantage of a uCoded CISC machine is in the richness of the instruction
set. Many of the CISC machine designers provide specialized instructions that can be
of great use in specific circumstances. Some CISC computers will have specific
instructions for the treatment of continuous streams of data such as might come from
communication interfaces. This becomes almost a crossover capability from DSP
machines. If the robot needs specialized communication or data-processing instruc-
tions, look for them in the CISC instruction set of the processors under consideration.
Pentium™ processors have the Multimedia Extensions (MMX) instruction sets and cer-
tain constructs that are good for the processing of vector data.

Some CISC machines provide floating-point instructions, which can greatly speed
up some algorithms. Others provide communication instructions such as the computa-
tion of ECC polynomials and Viterbi codes.

COPROCESSORS

In an effort to provide extra horsepower for their processors, some designers couple
processors together. The Pentium™ class processors can operate in tandem. This allows
the same programs to operate a bit faster without significant modifications. For more
information, go to www.intel.com/products/server/processors/server/xeon_mp/index.
htm?iid=search+XeonMP.

Other designers coupled together processors with disparate capabilities. The 
PowerPC™ from Motorola is in such a class. The second processor is termed the
communications processor and is reserved almost exclusively for the use of Motorola
processor designers to provide communication processing. It’s a simple RISC machine
that is not documented for end users. It’s used, for instance, to provide the processing
necessary to implement LAN (local area network) communication interfaces. The com-
munication processor can handle several communication interfaces at the same time,
limited only by the overall bandwidth of the coprocessor. Other communication proto-
cols like ATM, Sonet, and others are available as complete uCode that can be loaded into
the coprocessor and kicked off.

If we can find a processor with significant coprocessing power, it can be used for par-
allel processing. The newly introduced network processors can be used like this. They
are basically multiple RISC processors in a single chip. They’re used for the process-
ing of packets on the Internet, a task that can be partitioned and requires great horse-
power. These chips are available from Vitesse, IBM, Motorola, and many others. Thus
far, they have been used only for network processing, which handles IP packets in real
time, but they are very powerful parallel processing machines and might work well in
a robot control system.
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INPUT/OUTPUT (I/O)

No matter how good a processor is, it’s useless if it cannot communicate with the out-
side world. A computer can only process information as fast as the slowest link in its
communication chain. Besides traditional input/output (I/O), which we’ll get to in a
moment, other communication paths within a computer can slow it down. If the mem-
ory is too slow for the processor, everything slows down. When designing a robot sys-
tem the first time, be very careful to analyze the required communication bandwidths
throughout the computer circuitry.

Think of a person who is blind. A blind person can certainly think fast and figure
things out, but might take longer than most to assimilate visual or printed matter
through Braille. As such, a blind person might not be the best choice to be an air traf-
fic controller. I know I’m going to get into trouble for that statement, but it’s true. The
world is put together to suit sighted people and thus often puts blind people at a disad-
vantage. However, blind people might have advantages in situations where their spe-
cially trained hearing skills come to the fore.

So, too, certain processors have more I/O bandwidth than others. If the robot’s sys-
tem architecture calls for a processor to digest and process all the bytes coming in a
1000BT LAN interface at full speed, it’s a pretty good bet there won’t be any 8-bit
processors that can handle it.

We must evaluate many places inside the computer hardware to determine if enough
bandwidth will be able to handle the contemplated design. The list of considerations
includes the following computer components.

Buses

A bus is a communication path within the computer that carries data from one place
to another. Generally, a bus is a collection of wire traces on the PCB with a protocol
that defines the meaning of the signals on the traces. It is not possible to put more data
across the bus than the protocol claims it can handle. In fact, it is rare that the full,
raw bandwidth capability of the bus can ever be achieved. While planning the design
of the system, it is wise to derate the bus to 50 to 80 percent of the advertised band-
width. This is likely the fastest speed at which we will be able to drive bytes across
the bus.

Buses are generally designed by industry committees to solve particular data trans-
fer problems. Often, the bus will have been designed to enable multiple manufacturers
to build compatible equipment. Buses have characteristics such as width (analogous to
word length), bandwidth in bytes per second, voltages, and loading. Loading defines
the number of separate devices that can be connected to the bus at the same time.
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Multiple buses are used inside most computer systems. To make sure we compare the
bandwidth across each bus to the requirements set by the system architecture, it’s impor-
tant to list every bus within the computer. A few of the buses are hidden from most users
and do not even have popular buzzword names. Let’s look at those buses first, and then
proceed to the popular, named buses.

Memory Bus

All computers have an interface between the memory and the processor. The processor
can only read and write to the memory at specific speeds. If the system architecture
calls for the processor to read data, manipulate it, and rewrite it, then we must be very
careful about the memory bus speeds. If the system architecture calls for the data
manipulation to be completed within a strict time budget, we must add the processor
execution time to twice the data transfer time (one transfer to read, and one transfer to
write). The transfer times may turn out to be a significant percentage of the overall tim-
ing. If this is a problem, we can look for a bigger memory bus to work with.

Sometimes the processor is just too slow on the transfers. If that is the case, we can
look for Direct Memory Access (DMA) hardware. DMA circuitry can transfer bursts of
data faster than most processors can. Sometimes DMA hardware is included within the
processor, and sometimes we can add it on with external chips. Smaller processors will
generally not have DMA capabilities. Here’s a good rule of thumb. If the analysis of the
robot’s architecture shows that the memory bus is loaded down by as much as 30 per-
cent from data moving across it, consider a faster computer, a wider memory bus, or
DMA transfers.

Video Bus

Many computer systems are used to process vast amounts of video or graphics data.
Game systems certainly are like this, and specific computer graphic buses are very fast
and flexible. The penalty for choosing the wrong graphics bus would be poor graphics,
delayed images, or system failure. If the robot design will use a great deal of graphic
display and manipulations, consult the following site as a start: www.agpforum.org/.

Many other named buses exist within a computer as well. The following URLs are
part of a superior web site. It’s a great place to start, comparing buses and looking up
their specifications:

� www.interfacebus.com/Bus_Design_Top.html
� www.interfacebus.com/Design_Interface_table.html
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Here’s one computer bus almost everybody overlooks: www.hits.org/hits/bus/
bus5.html. Hopefully, you’ll see it coming!

Now let’s talk about some standard buses. More information on each can be found in
the two previous interface.com web sites. The standard buses are as follows:

� Industry Standard Architecture (ISA) ISA no longer means what it says. This
bus came out with the original PC and was the mainstay of the industry for many
years, but it’s obsolete in that industry now. The bus had a limited bandwidth at 8
MBps. Don’t use it! For more info, go to www.interfacebus.com/Design_
Connector_PCAT.html.

� Peripheral Component Interface (PCI) The PCI bus has taken over as the
standard bus in the PC industry. It’s a bus with a specialized type of signal that
is limited in two ways. Signals can only traverse a limited distance (roughly the
size of a PC motherboard). In addition, only about four loads (like connectors
or integrated circuit pins) can be put on the bus before it starts to load down
and fail. Bridge chips exist that can extend the PCI bus to more loads and
sockets.
A few versions of the bus exist, differentiated by the voltage, word width, and fre-
quency. The most widespread version has the following characteristics: 5 volts and
32 bits at 33 MHz. This gives a bandwidth of (32/8) � 33 million � 132 MBps
per second (raw speed). As a practical matter, nobody could ever get better than
about 100 Mbps out of the bus because of housekeeping tasks that take place on
the bus. The maximum size of PCI bus technology lately is 64 bits at 133 MHz
for a 1 Gbps bandwidth (raw speed).
PCI has become an industry standard. Many board manufacturers and many chip
manufacturers have adopted it. If the robot’s computer supports the PCI bus, many
third-party boards will be available to customize the design and save time (see
www.interfacebus.com/Design_Connector_PCI.html).
The PCI bus would be an excellent choice for a robot as long as the vibration prob-
lems can be addressed. The bus has around a hundred pins on each connector. It
only takes one pin to fail from a vibration to bring a system down. If reliability is a
key, look into the Compact PCI standard. It’s a bit sturdier (see www.interfacebus.
com/Design_Connector_CPCI.html).

� PCMCIA cards This standard describes not so much a bus as an interface socket.
Many peripherals are available as pocket-sized PCMCIA cards, so it’s a good option
for adding memory and peripherals to a robot. Most portable laptop PCs have PCM-
CIA sockets to accommodate these cards. The transfer rate is on the order of 20
MBps (see www.interfacebus.com/Design_Connector_PCMCIA.html).
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� Universal Serial Bus (USB) USB is a serial standard (using a thin cable) that is
capable of transfers at around 1.5 MBps. It’s well known in the PC industry and
enables peripherals to be plugged in and out of the computer quickly, even with
the power turned on. For robots, a USB might be an easy way to hook into another
computer for communication or downloading. Many portable PCs support this
standard and could be brought up to the robot to service it. For more info, go to
www.quatech.com/Application_Objects/FAQs/comm-over-usb.htm.

� Firewire, IEEE1394 The Firewire standard is generally used in systems requir-
ing a great deal of media data (audio or video). Cameras and other media devices
connect together using thin, hot-patch serial cables. Audio and video can be trans-
ferred in real time, without interruptions, between devices. One peculiarity of
media streams is that they cannot be interrupted without a noticeable degradation
of the transmission. If an interruption occurs in a digital video stream, for exam-
ple, blocks can be seen on the screen. The Firewire protocol is designed to guar-
antee the delivery of media data across the timeshared wire. If the robot must
transfer video or audio data, Firewire might be a good candidate for those trans-
missions. Broadcast video requires a transmission bandwidth of around 15 to 34
MBps. Firewire can handle around 50 MBps (to accommodate multiple trans-
mission streams) and faster versions are planned. For further info, go to
www.interfacebus.com/Design_Connector_Firewire.html.

� Controller area network (CAN) The CAN bus is a serial bus standard designed
for use in electrically noisy environments such as automobiles and industrial sites.
It can transfer data at up to 125 KBps over cables from 40 to 1,000 meters long
(depending on data rates). Its other major advantage is that it saves wiring cost, an
important consideration when making thousands of automobiles. If the robot gen-
erates a great deal of electrical noise from its motors, then CAN might be a good
choice for the electrical bus inside the robot (www.interfacebus.com/Design_
Connector_CAN.html).

� Inter-IC (I2C) I2C is a serial bus standard used largely for signaling within a
single PCB, although at least one version of the protocol uses a cable. Its primary
value is to save pin count on small chips that require slow, complex data trans-
missions. If the robot is short on PCB real estate, then I2C chips can save quite a
bit of room. The maximum bandwidth is around 400 KBps (www.interfacebus
.com/Design_Connector_I2C.html).

Network

No discussion of I/O would be complete without a discussion of LAN I/O. Almost every
computer system has a network interface, whether it’s hooked up or not. In everyday
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business life, every computer is hooked up to the network in the office. The network,
as it applies to a computer, looks just like a single cable that hooks into the back of the
computer. The computer software knows how to talk to the other computers on the net-
work and can use the wire to do so. We will discuss just how this occurs in the chapter
on communications. The commonly used communication links (between computers)
used in network communication are the following:

� 10/100BaseT A single cable attaches to the back of the computer to provide
10/100BT connectivity. The cable may look like a phone cable or it may be coax-
ial like a cable TV cable. It may well use the Ethernet signaling voltages and pro-
tocols, and it probably is directly connected to a switchbox in a back room full of
server computers. It’s the single most popular way of connecting computers
together and would be a good choice for the robot. Most computer boards that are
purchased off-the-shelf have a network connector on board, but beware; this type
of communication system requires a sizeable amount of software to support it. If
the robot needs such a communication link (and connector), make sure the robot’s
computer will include the proper operating and network stack software. We’ll dis-
cuss this further later.

A 10BT interface has a raw bandwidth of 1.25 MBps but generally cannot sup-
port more than 75 percent of that. The 100BT is 10 times faster. Many computers
support both interfaces. A 1000BT interface is 10 times faster again, supporting
a bandwidth of 125 MBps. Don’t forget to derate this number for practical pur-
poses. However, at such speeds, many computers cannot even keep up with a
1000BT interface; high-speed, 32-bit systems are needed. Remember, the robot’s
computer system will only be as fast as its weakest link. Here are a couple of web
sites about the type of wires needed for such communication links:
� www.linksys.com/faqs/default.asp?fqid=18
� www.zytrax.com/tech/layer_1/cables/tech_lan.htm

� Wireless (RF) It’s not unlikely that the robot will need to be mobile. Assuming
that’s the case, having a local area network (LAN) wire plugged into the wall is
impractical (and not cool). Designers long ago freed the owners of portable PCs from
such wiring tethers with the introduction of a few wireless protocols. The most pop-
ular is 802.11, which comes in various versions, the most prevalent of which is
802.11b. It boasts speeds of up to 1.3 MBps, comparable to the wired 10BT standard.

If we can restrict the communication needs of the robot to a fraction of that band-
width, then 802.11b might make an excellent choice for external communications.
Just be aware that an RF communication link is much more prone to errors than a
wired link. Motors, computers, lights, radio stations, and even the stars all put out
interference that can quickly corrupt a well-designed, standard RF communication
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link. Be very careful when using RF links. Make sure the transmission distances
are well known because RF signals degrade rapidly over distance. The control sys-
tem for the robot must be capable of surviving the interruption or corruption of the
data streams coming over the communication link.
Here are a few sites about 802.11 technology:
� www.computer.org/students/looking/summer97/ieee802.htm
� www.wave-report.com/tutorials/ieee80211.htm
� www.homenethelp.com/802.11b/index.asp
� www.80211-planet.com/tutorials/article/0,4000,10724_1439551,00.html
� www.webopedia.com/TERM/8/802 _11.html
� www.intelligraphics.com/articles/80211_article.html

� Wireless Infrared (IR) IR light is another possible method of communicating
from place to place. IR exists in sunlight and everywhere in our daily existence.
It can give us sunburn and it’s just waiting to ruin the first robotic IR communi-
cation link it can find. Stray IR radiation is less prevalent indoors and has been
used indoors for low-speed data links over short distances. But even indoors, RF
communication links are beating the pants off IR communication links in all
respects. The TV clicker may be the only appliance still using IR inside most
houses.
Here’s a great site detailing much of the wireless LAN technology currently avail-
able: ftp://ftp.netlab.ohio-state.edu/pub/jain/courses/cis788-95/wireless_lan/
index.html.

PERIPHERALS

To round out our talk about I/O, let’s talk about peripherals. Although the use of periph-
erals involves data communication over communication buses and links, it differs in
some respects. Peripherals are often thought of as sources or destinations for data. They
are devices that are attached to the computer to allow the entry, storage, or display of
data. Peripherals are a bit boring and commonplace; they’re described in thousands of
articles. So why talk about them here?

First of all, robots are generally thought of as portable devices, clunking away their
existence in dusty, poorly lit industrial cubicles to satisfy the peevish desires of their
slavish masters. (Does this hit home? I hope I haven’t ruffled any feathers out there!)
Peripherals have to be carefully chosen if they are to match the requirements needed for
a robot. If the robot moves or vibrates, many new requirements must be addressed,
including vibration, shock, temperature, humidity, power reliability, and electrical radi-
ation. We’ll look at all these factors later as we consider environmental issues, but we
can take a look at some of the I/O peripherals in this chapter.
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Disks

Hard disk (HD) drives are familiar to most people. They are in most personal comput-
ers and are occasionally a source of frustration if they misbehave. When they break,
they can cause significant headaches and losses of expensive data. The environment
they operate in is important to consider. An office environment is quite stable in most
respects. If an HD is put into a robot, it must be treated properly. Readers should extrap-
olate the following discussion to CD-ROMS and other rotating media since the fol-
lowing discussion will only address magnetic HD disks.

An HD is basically a spinning disk of magnetic material that can contain bits on its
surface. A read/write head glides over the surface and provides access to these bits
for the computer. When designing an HD into a robot, consider the following HD
characteristics:

� Vibration The HD, while it’s running, holds its read/write head over the disk
surface. The distance between the two is very small, on the order of millionths of
an inch. Vibrations caused by motors, wheels, actuators, and other motions or the
robot jiggling the disk head will ruin the data. In the worst cases, the disk head
might touch the surface of the disk and scrape off the magnetic coating, ruining
the HD completely. Read the vibration specifications of the HD very carefully
before using it in a robot design. Consider replacing the HD with a more expen-
sive alternative like flash memory cards that have no moving parts. In the design
of a robot, it’s wise to restrict the amount of data that will have to be stored
onboard. If an HD must go into the robot, consider using an HD specifically
designed for laptops. Laptop HD drives are more robust than most.

� Shock If the robot hits a pothole, falls over, or simply burps, the HD may expe-
rience a sudden shock. It’s not unusual for shock forces to hit 50 or 100 times the
force of gravity for a very short time period. Read the HD specifications very
carefully. There may be different shock specifications for operation and storage.
When trying to match the HD specifications to the robot’s specifications, don’t
forget to include the period when the robot is being shipped but is not operating.
If the HD cannot take the shock specified in the robot’s requirements, consider
another technology like flash cards. Another option would be to consider derating
the robot’s specifications so it will be treated more gently in operation.

� Temperature Like any component within the robot, a HD will have tempera-
ture ratings. The only extra thing to consider is that temperature might cause the
HD to shrink or expand temporarily and thus make errors for a while.

� Gyroscopic torque HDs contain rotating masses. As such, they will behave like
a gyroscope. Remember those spinning toys that could balance on your finger?
Gyroscopic action inside any HD will exert the same forces.
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Any HD will resist being turned. If the robot will be spinning or moving in such
a way that the HD is thrown around some, better do some worst-case calculations
on the rotational velocity of the HD. The specifications of the HD may not be very
clear about the torque that the operating drive can withstand without making
errors. If possible, arrange for any robotic motions affecting the HD to be copla-
nar with the rotating mass of the HD. Picture an HD placed on a flat surface. Most
HDs are shaped like a brick, with the disk surface spinning like a record rotating
about a vertical axis. The operating HD can be moved sideways just fine without
engendering gyroscopic forces. But if the HD is twisted sideways, it will resist
with gyroscopic forces. These forces could ruin data or burn out the motor bear-
ings over time. Read the specifications for the HD very carefully. If no specifica-
tion for rotational acceleration exists, beware. All disks do have a limit for this, so
find out what it is.

� Spin-up time HDs take a couple of seconds to spin up to operating speeds. If
the information on the HD must be instantly accessible, don’t allow the HD to spin
down automatically with disuse. Some computer systems will enable HDs to spin
down to save power. If this is an issue, make sure the computer is not allowed to
turn off the disk motor.

� Longevity HDs only have finite lifetimes. There should be Mean Time Between
Failure (MTBF) information (discussed later) for the HD, which takes certain fail-
ure mechanisms into account. Barring electrical failure, either the spindle bearing
will wear out or the HD magnetic surface will wear out. In addition, some issues
may arise regarding data degenerating over long time periods and becoming prob-
lematic. CDs have this problem, and HDs probably do too.

� Error rates HDs do make errors. Generally, the signals that are recorded are
more than sufficient to allow a proper read of the data.
� Bad disk surface HDs also have a mechanism to avoid bad spots on the disk

surface. A separate place exists in the HD surface to record the location of bad
sectors on the surface so they can be shipped from the factory without having
perfect media. The HD can then avoid those bad spots altogether. However, the
disk surface can also develop new bad spots. If the operating system can detect
such an occurrence, it can compensate for it.

� Bad write or read Occasionally, the disk just makes a mistake. Errors can
occur because of media problems, vibration, and probably phases of the moon!
Usually, the operating system software is programmed to detect the problem
and compensate for it. If the design of the robot is such that data must never be
lost, then multiple disk images should be written. It is also possible to put in
multiple disks to accomplish this. Read up on Redundant Array of Inexpensive
Disks (RAID) systems if this is a requirement for the design of the robot. Check
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out www.acnc.com/04_01_00.html and www.pdl.cs.cmu.edu/RAIDtutorial/ for
RAID technology info. For both URLs, follow the links; they have multiple
parts.

� Removable media The robot design may call for the addition of removable
media. Floppy disks, CD-ROMS, or memory cards can be used to add or remove
data from the robot. This sort of communication link works if the data does not
have to go through immediately. It’s called Sneaker Net because the operator walks
around and carries the data. The only extra considerations to keep in mind are
� Removable media may be less reliable than permanent media.
� Removable media can be stolen or misplaced.
� Removable media can jar loose with shock.
� Removable media drives leave an extra hole in the side of the robot that can

admit dirt and RF interference (to be discussed later).
� Connections and cable integrity HDs have many connections. In any portable

robot application, connections can be an unreliable component. If the HD con-
nects directly to a robot PCB, then the number of connections is minimized. If the
HD is connected to the robot using a flexible cable, then the number of connec-
tions is doubled (decreasing reliability) and another component is introduced into
the system. A flexible cable will truly live up to its name; it will flex. If the robot
moves about quite a bit, all components will be subject to accelerative forces.
Most flexible cables are not meant to withstand continuous flexing. They are only
made flexible so the cable can bend around and make a proper connection.
Specially made flexible cables can be designed for repeated flexing in mobile
applications, but they must be specified for such use, and most are not. Flexible
cables may ultimately break.

Tape Drives

It seems clear that all the considerations we’ve discussed about HDs also apply to tape
drives. To reiterate these considerations, let’s list the topics from the previous dis-
cussion:

� Vibration
� Shock
� Temperature
� Gyroscopic torque
� Spin-up time
� Longevity
� Error rates
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� Removable media
� Connections and cable integrity

The following issues are a bit different:

� Most tape drives that support removable media have large openings. These open-
ings can admit contaminants and allow RF emissions both in and out of the robot.

� Be sure to check on the orientations that the tape drive can operate in. Some tape
drives may have more restrictions than others.

Printers

Many of the same issues relevant to HDs are also relevant to printers. The same issues
are listed here as a reminder. Some of them have been modified. If the robot must have
a printer onboard, consider all the same issues.

� Vibration Printers not only may malfunction in the presence of vibration and
shock, but they also generate vibration and shock and distribute it throughout the
robot. These extra motions must be added to the environmental specifications that
the robot must withstand. Said another way, the printer’s motion makes the over-
all vibration and shock requirements tighter.

� Shock
� Temperature When evaluating the performance of the robot in temperature

extremes, do not forget the properties of both the ink and the paper. These
components must also pass muster. Don’t forget that paper is a major source
of dust.

� Gyroscopic torque
� Spin-up time Many printers take quite a while to warm up, longer than disks

do.
� Longevity Printers are less reliable than HDs are. They also wear out faster.
� Error rates
� Removable media Printers are likely to leave huge openings in the sides of a

robot. These openings generate RF emissions and admit dust and dirt.
� Connections and cable integrity

Displays

When considering large displays, such as LCDs for a robot design, we have to consider
multiple problems:
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� Shock Glass displays will crack once G forces get too high. It’s very easy to
break LCDs; people break their portable PC screens all the time.

� Temperature LCDs have a very limited temperature range and will become
unreadable outside that temperature range. Look for other display types if the
robot needs to function over a wide temperature range.

� Longevity The backlighting of LCDs can wear out over time, making them
dimmer and nonuniform. This can happen if the LCD contains bulbs, which will
suffer from metal migration over time. Look for LCDs that have backlighting
using other technologies and check the MTBF specifications.

� Power The LCD backlighting can take quite a bit of energy. Further, the soft-
ware to control the energy expenditure can be complex to write.

� Electromagnetic interference (EMI) When considered in terms of electro-
magnetic shield integrity, LCD screens are just massive holes in the package of
the robot. This makes it very hard to keep radiation from leaving or entering the
robot.

Process for Choosing a 
Robot’s Computer Hardware
At some point, we’ll be faced with the task of picking the actual computer to put inside
the robot. This is a task that requires experience and should be approached in a sys-
tematic way. That said, almost everyone does this a different way, so have patience with
differing opinions. And try to bear in mind that a diverse gene pool actually is a good
idea!

The first thing to consider is getting some help. Just as advisors can be of consider-
able assistance in the planning phases of a project, so too can they be of value in the
early High-Level Design (HLD) phase. The best advisors to approach are experienced
engineers who have done it all before. They can often see clear solutions among the
many options available to the project.

Barring the discovery of an immediate solution for the needs of the project, it makes
sense to list the viable candidates that will be considered. Whether it makes sense to
build or buy a computer for the robot, the end result will still be the same. The robot
will have a computer board (or boards) inside it, and the boards will contain a proces-
sor chip. In listing the candidates, it makes sense to list them all as processors.
Magazines list processor chips in articles that are updated at least yearly.
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Here are a couple of recent web sites with lists of embedded processors that could be
considered. The lists are neither exhaustive nor are they correct, but it’s a place to start:

� www.e-insite.net/ednmag/index.asp?layout=article&stt=000&articleid=
CA245647&pubdate=10/3/2002

� www.cera2.com/micr/index.htm

We should observe certain rules during the selection process:

� Make sure none of the requirements of the design are too restrictive. If the design
requirements are so tight as to eliminate all but one candidate, then change the
design. If the design or components have no wiggle room, the project is much
more likely to run into problems.

� Make sure that any processor candidate exceeds most of the requirements by a
good margin.

� Don’t spend a massive amount of time on the selection process. Among the final
candidates, more than one perfectly good choice should be available.

� Prioritize the requirements. No processor will be a perfect fit for the requirements. If
the most important requirements are identified, it may help to make the choice clear.

Several possible strategies can be used for any search. Here are a few pointers that
can be used during the process:

� If the project advisors suggest a specific candidate, consider it for final selection
and require the other candidates to knock it out of the number one spot by exhibit-
ing clearly superior characteristics.

� Another alternative is simply to disqualify candidates until few are left. The search
process itself involves solving a number of problems simultaneously. The speci-
fications for the robot and for the control algorithms impose many constraints on
the processor selection process. Each constraint can be used to eliminate many
candidates.

� Consider starting with the constraint that is the hardest to overcome. Often, the
most difficult constraint will eliminate most of the processor candidates. The
quicker we can narrow the field down to a very few candidates, the less work the
selection process will take up.

CONSTRAINTS

What are the sorts of constraints commonly considered during the selection of a proces-
sor? The following pages contain a basic checklist of things to look into when select-
ing a computer.
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Compute Crunch

It is quite difficult to get a sense of the amount of work the processor must perform in
real time. The processor will be executing instructions at full speed unless it is asked to
rest as part of saving power. During the time it is running instructions, it can only per-
form a discrete number of calculations per second. The amount of work the processor
can do is therefore limited. It is a fine art to be able to estimate how much work any one
processor can accomplish. The following should be considered during this process.

Algorithms Perform an analysis of the control algorithms and determine how many
instructions per second must be executed to accomplish the work required. If, for
instance, we know that the algorithm requires the processor to perform 5,000 instruc-
tions every 20 milliseconds, we have a measure of how busy it will be. It will be exe-
cuting at least 250,000 instructions per second (5000/.020). If the processor is capable
of executing 1 million instructions per second, then about 25 percent of its time will be
devoted to the algorithm in question.

Next, we can take a look at all the other algorithms the processor must execute and
determine how much of the processor time they will consume. Simply add up the per-
centages to get a gauge of how busy the processor will be. As a general rule of thumb,
don’t count on being able to load the processor down more than 50 percent. All proces-
sors will have housekeeping tasks to perform that cannot be easily accounted for.

Further, the more often any one algorithm is executed, the more overhead it will require.
Simplifying matters somewhat, it can be stated that a fixed amount of processor time is
required to execute any one algorithm once. If we make the algorithm shorter but have to
execute it more often, the processor will lose efficiency. Let’s look at an extreme example.

Suppose, for example, that the processor must execute 100,000 addition instructions
once a second. Suppose further that it requires 10 instructions just to kick off an algorithm.

Algorithm A executes 100,000 additions at the same time. To accomplish the required
100,000 additions per second using algorithm A, the processor must execute 100,010
instructions per second (1 � (100,000 � 10)).

Algorithm B executes 100 additions every millisecond. To accomplish the required
100,000 additions per second using algorithm B, the processor must execute 110,000
instructions per second (1000 � (100 � 10)).

Algorithm A will be much more efficient of the processor’s time, about 10 percent
more efficient than algorithm B. We’ll study the various methods of setting up control
algorithms in a later chapter.

Operations per Second Most computers are capable of executing many instructions
every second. Often, this number is given in millions of instructions per second (MIPS).
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When evaluating a processor, it can be difficult to determine just how many instruc-
tions it truly can execute per second. This can be accomplished in a few different ways:

� Calculated speed Processors have a definitive clock speed that can be deter-
mined by an inspection of the PCB circuit. Usually, there will be a “crystal clock”
in a metal can immediately adjacent to the processor chip. The frequency marked
on that crystal is a starting point; it’s often about 50 MHz (50,000,000). It repre-
sents the external clock frequency of the processor. Often, the processor will mul-
tiply that external clock frequency by a factor to determine the internal clock
frequency. Once we know the internal clock frequency, we need only determine
the number of internal clock cycles that the average instruction consumes. Most
processors fix this number between 1 and 8. With these numbers in hand, we com-
pute the number of MIPS for the processor on that PCB.

� Benchmarks Many people are curious about the speed and capability of differ-
ent processors and they’re eager to see comparisons. One of the difficulties
involved in making such comparisons is that each processor has its own strengths
and weaknesses. Even a wimpy 8-bit machine with the right instruction set can
whip a 32-bit machine in some tasks. It depends on what the processor designs
were optimized for.
Various organizations have proposed standardized programs (called benchmarks)
that can be executed on every machine. Generally, the benchmarks are simple pro-
grams for sorting, moving, or transforming data. Invariably, the benchmark then
rates the performance of the processor with some index, which can be compared
to that of the other processors. Since all the benchmark programs are different, it
is not unusual for processors to be rated at the top of a benchmark, but lower on
others.
If we want to determine from benchmark data how processors will do in our robot
design, we must find a benchmark that performs a task similar to the algorithms
in our robot design. If we choose a benchmark that performs tasks sufficiently dif-
ferent from our robot, we may be led astray. Generally, benchmarks are available
for downloading and execution, but they can take quite a bit of work to implement.
Here’s one (older) PDF file describing benchmark techniques. The data may be
obsolete, but the methods are still fairly modern: www.zilog.com/docs/z380/z380
bench.pdf.
These sites provide descriptions of a few benchmarks:
� www.specbench.org/osg/cpu95/news/cpu95descr.html
� http://spec.unipv.it/
� http://www.eembc.org/
� http://performance.netlib.org/performance/html/dhrystone.intro.html
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� www.dl.ac.uk/TCSC/disco/Benchmarks/whetstone.html
� www.dl.ac.uk/TCSC/disco/Benchmarks/spec.html
The following URLs contain some benchmark results:
� http://spec.unipv.it/results.html
� www.eembc.org/
� http://kennedyp.iccom.com/riscscore.htm
� http://kennedyp.iccom.com/cpuscore.htm
� www.cpuscorecard.com/benchmarks2.htm
� www.netlib.org/performance/

So what do we do with all these numbers? We’ve seen how we can get a parametric
evaluation of a processor. If we have done our calculations properly (in the case of cal-
culating MIPS) or if all of our assumptions are correct (about the applicability of bench-
mark data), then we can compare processors directly in terms of compute crunch. The
processor with the best performance can be chosen (all other things being equal).

Arithmetic Capability

Most processors have fixed-point instructions. Some processors have floating-point
arithmetic instructions built in. The PowerPC™ is in this class (see http://developer.
apple.com/techpubs/mac/PPCNumerics/PPCNumerics-146.html).

If the robot must process quantities of floating-point numbers, this capability will be
important. Processors with just fixed-point instructions can still execute floating-point
instructions, but the execution will be much slower than that of a processor with intrin-
sic floating-point instructions.

Word Length

We’ve discussed word length before, but it’s worth listing again. It’s certainly an impor-
tant characteristic of a processor. Processors with longer word lengths generally have
added capabilities that make them much faster than one might expect. A 32-bit proces-
sor is generally much more than 4 times faster than an 8-bit processor.

Memory Size

Many small processors have RAM and ROM memory built right into the processor
chip. It’s easy to get 8-bit processors with such internal memory, and even some 32-bit
processors. If the robot’s control program is very small, and the number of robots to be
built is large, consider these sorts of chips. It’s wise to double all estimates of memory
size; get much more than might be needed. The larger the memory size, the better.
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The size and type of cache memory is also an important feature of a processor. If the
robot’s software has many tight execution loops, then cache can be a very important fea-
ture to have in the selected processor.

Bandwidth

We’ve already discussed bandwidth, and it belongs on this checklist. Be sure to look
into all the different bandwidth limitations of the processor.

Utilization of Resources

In many real-time applications like robots, various processor resources are extensively
used. Very often, as multiple control algorithms execute, they have to share resources
inside the processor. If one of the resources is in great demand, it can become the bot-
tleneck in the system that limits overall performance. The DMA capability of the
processor is a typical example. Some smaller processors have a special-purpose mem-
ory controller (DMA) that can move blocks of memory around. It works in parallel with
the processor when it’s started. If it cannot get its job completed by the next time it’s
needed, then it’s clearly overused. If an inspection of the architecture points to such a
problem in advance, then look for a processor with more capabilities.

Special-Purpose Hardware

We discussed several special-purpose processor types previously, and it’s worth men-
tioning them again on this checklist. Many processors, even general-purpose proces-
sors, have one or two special features worth noting.

Power

Power considerations are one of the most critical features in a robot and in a processor.
Later, when we talk about power control, we’ll get deeper into the details. If the robot
is battery powered, then give considerable attention to power matters. The success of
power conservation efforts very often hinges on the power-saving capability of the
processor and the software available for using its power-saving features.

Cooling

Even if the robot can supply lots of power to a processor, we must take into account the
method of cooling the processor and circuitry. Some processors require heat sinks and
even fans, both of which can cause reliability problems and take up space.
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Voltage

Processors are available that work on various different voltages. Some processors can
work on very low voltages, as low as 1 volt (although this is rare). Moving to a lower-
voltage operation can be done for two reasons. The first is power savings, which we’ll
discuss shortly. The second reason is to match the battery voltage (if a battery is used
in the system). A considerable amount of power-supply circuitry can be taken out of the
design if the circuitry can accept the battery voltage directly.

Space

Sometimes space is at a premium inside a robot. If so, consider the space taken up by
the processor chip and any heat sinks or fans that may be required.

Reliability

Some robots are sent to space or other relatively inaccessible places. They may be sub-
ject to extreme environmental stress, including temperature, vacuum, vibration, and
radiation. There may be no opportunity to even service the robot. If reliability is key,
then consider the choice of processors carefully. Spacecraft designers, for instance,
often choose older, proven processors that have been tested for years. There are several
good articles on the special considerations must be taken into account:

� www.klabs.org/DEI/Processor/index.htm
� http://klabs.org/DEI/References/design_guidelines/design_series/1248.pdf
� www.gd-ais.com/Products/srs/process/isc.pdf
� www.spacecoretech.org/coretech2000/Presentations/Software/ISC_Case_

Study/sld001.htm

Reprogramming

Some computers have onboard memory. Make sure to check if this can be repro-
grammed or not. Even if it can be reprogrammed, check and see which features the
processor has to facilitate it. How will the processor be accessed, downloaded, and
restarted?

Benchmarks

We’ve discussed benchmarks and how to determine the “horsepower” of a processor. It
makes sense to list benchmarks on this checklist.
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Price

It’s possible to obtain processors for under a dollar, and it’s possible to pay thousands
of dollars for some. When shopping for processors, don’t forget that a quote means
nothing if delivery is not forthcoming. Some processor companies will not even talk to
customers who only want a few processors.

Software Tools

A good processor that is not well supported is useless. Here are some factors to
consider:

� Support How well is the processor supported with software development tools?
Many special-purpose processors have custom-made tools that must be used.
Most general-purpose processors attract sufficient attention so that multiple soft-
ware tools are available.

� Second source What will happen if the processor company goes out of busi-
ness? It is possible to specify processors for the robot that can be purchased from
multiple vendors. The processors may not be identical in all cases, but the con-
version will be simple. Don’t forget that it does no good to secure two distributors
for a processor if the processor is only made in one place!

� Availability of SW engineers Don’t forget to consider the software engineers
when choosing a processor for the robot. If the SW engineer cannot handle the
chosen processor, consider replacing the processor. The other, easier option is to
replace the programmer!

� Software price Don’t forget to consider the price of the software tools. Many
are available on the Internet, but others can be very expensive.

� Development equipment Some software tools may require a very fast devel-
opment system, and it may not be a PC. If the development system requires Unix
or another operating system, a PC may not be the right choice for the hardware
platform.

� Licenses needed Consider how many programmers must use the development
software tools. Some tools come with “seat” licenses, meaning the project will
need one license for each engineer using the development tools.

Development Time and Expense

Beyond the issue of software development tools, many other issues can affect the time
and expense of the development of the robot:
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� COTS This acronym stands for Commercial off the Shelf. Basically, we can buy
computer boards with processors already on them. We’ve discussed this before,
but it bears listing here. For each processor candidate, how many companies are
selling PCBs (suitable for the robot) containing the processor?

� Third-party software Has anyone written specialized software for this proces-
sor that can be of use in the robot design?

� Tech risk Will any features of the processor help defuse the project’s technical
risk?

More issues should be considered when choosing a processor. Here are a few more
web sites and PDFs detailing how others might approach the process:

� www.cs.berkeley.edu/�liblit/darwin/slides
� www.cs.berkeley.edu/�liblit/darwin/darwin.pdf
� http://bwrc.eecs.berkeley.edu/Publications/2000/Theses/Evaluate_guide_

process_archit_select/Dissertation.Ghazal.pdf
� http://dec.bournemouth.ac.uk/staff/awatson/micro/notes/Lect1_98.doc

Picking a processor and computer hardware for the robot is much more complex than
it may seem at first glance. But with proper attention paid to all the questions outlined
above, the process should go smoothly.
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RELIABILITY, SAFETY, 

AND COMPLIANCE

Reliability
Why bother with this topic at all? Well, given the most recent TV shows about battling
robots, most people think of robots as mechanical disasters that can only last three min-
utes before various parts start to fall off (or get yanked off). Whole organizations are
devoted to such events, such as the Survival Research Labs (www.srl.org/). On the more
serious side, robots working in automotive plants are expected to work nonstop for years
in very difficult conditions.

To the greatest extent possible, it makes sense to design a robot to be highly reliable.
Towards that end, we must learn what reliability is, how to measure it, how to predict
it, and how to achieve it. Certainly, many ways are available for accomplishing this, both
scientific and seat of the pants. In this chapter, we’ll take a grand tour of both methods.

Reliability has many definitions; here’s mine. For the robot to be reliable, it must ful-
fill all of our expectations. Certainly, the tires cannot fall off. But more to the point, it

123

4

04_200256_CH04/Bergren  4/10/03  11:59 AM  Page 123

Copyright 2003 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.



must be capable of achieving the goals that we set for it. These goals may include per-
formance, production, uptime, and dependability. Bottom line, we will rely on the robot
and it has to come through.

The Institute of Electrical and Electronics Engineers (IEEE) defines reliability as
“the ability of a system or component to perform its required functions under stated
conditions for a specified period of time” [IEEE 90]. Further definitions can be found
at http://athos.rutgers.edu/�rmartin/teaching/fall99/lectures/10/gfx004.html.

By observation, engineers have documented the failure rates of various component
types. Bellcore, now called Telcordia, has documented many of these failure rates and
published them at www.t-cubed.com/faq_bell.htm.

MATHEMATICS

Let’s call the failure rate of a component l, measured in failures per unit time. Loosely
speaking, if l is .001 per year, we could expect an average of one failure per year in a
population of 1,000 such components. We further define Mean Time to Failure (MTTF),
as the inverse of l. It represents the average amount of time a single component is likely
to last before it fails the first time.

We adopt MTTF as a convenient way of measuring and doing calculations about reli-
ability. However, some limitations exist, as explained at www.reliasoft.com/newsletter/
2Q2000/mttf.htm.

Once we accept MTTF and l as viable metrics, they can be used in calculations in
the following ways:

� Clearly, the reliability of a component can be defined from either MTTF or l,
since they are the computational inverse of one another.

� If a system has multiple components, then l of the combined population is the
sum of the individual ls. lpop � l1 �l2 � l3 � . . . � ln. Effectively, the fail-
ure rates add up. If the components are all on a printed circuit board (PCB), for
instance, then the failure rate of the PCB is the sum of all the failure rates of the
individual components. Clearly, the PCB will be less reliable than any one com-
ponent, and since the least reliable components have the highest l values, they
may well determine the overall reliability of the PCB.
Note that a combined population of even the most reliable components may not be
reliable. The chance of having one failure in the population may be high if many
individual components exist, even if they all have a low failure rate. Said another
way, since lpop � n � l, if n is large, lpop may be large even if l is small.

MTTF �  1>l
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� If we combine two systems with MTTF1 and MTTF2, we can find l1 and l2 by
inversion, add them together, invert the result, and get the MTTF for the combined
system. In this way, the reliability of a large system can be predicted.

� To predict the MTTF of a large PCB, for instance, perform the following steps:
1. Obtain the Bill of Material (BOM) for the board, the list of parts, and the quan-

tity of each.
2. Make a spreadsheet of the part types, grouping similar parts together. All the

resistors of the same wattage, for instance, can be thrown into the same group.
3. Don’t forget to count components like feed-throughs on the PCB. They have

failure rates, too! Count all connections and wires.
4. List the quantities in each group.
5. In the Bellcore tables, look up the l failure rates for each component type.
6. Multiply the failure rate by the quantity for each component-type failure rate,

and add up the component-type failure rates to get a failure rate for the PCB.
Invert it to obtain the PCB’s MTTF.

MTTR is the Mean Time to Repair a Failure. Basically, it’s the average time it takes
to repair a failed component and bring it back to functioning status.

MTBF is the Mean Time Between Failures. It’s related to the MTTF and MTTR in
that it is the sum of the two (MTBF � MTTF � MTTR). Basically, once a component
is repaired after a failure, it will take an average of MTTF � MTTR for it to fail again
and be repaired. (For more info, go to www.ab.com/harry/mtbf.html or www.its
.bldrdoc.gov/fs-1037/dir-022/_3254.htm.)

AVAILABILITY

The reliability of many systems is measured as availability. People who use computer
systems get very impatient if the computer goes down and cannot be used. They are
specifically interested in the percentage of time that the computer system will be usable.
Thus, availability is defined as follows:

From the middle term in the equation, we can see that if MTTR is very short, or if
the MTTF is very long, then availability approaches 100 percent. Engineers who need
high availability can work on both the MTTF and MTTR to achieve their goals. The
MTTR can be lowered in several ways.

If a failed unit requires a trip to the repair depot, it can take quite a while. But if a
spare component is right on site, repair can take just a few minutes.

If a hot backup component can switch over automatically, it will take a few seconds.
Hot backups can be accomplished with what’s called an “N � 1” backup. If a total of

Availability �  MTTF> 1MTTF �  MTTR 2 �  MTTF>MTBF
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N components are necessary for the successful operation of the system, the designers
add one more system, hence the terminology N � 1. If one of the N components fails,
the spare component will take up the slack and the overall system will keep running. If,
however, a second component fails before the broken one is repaired, then the system
fails. The calculations for MTTF and availability are somewhat complex in a case such
as this. For further information, see the following sites:

� www.mapleapps.com/categories/engineering/manufacturing/html/reliability.html
� www.mathpages.com/home/kmath326.htm
� www.mathpages.com/home/kmath498.htm

Done properly, availability goes up quite high, but at the price of a single extra com-
ponent. Repair is basically instantaneous, except for the case where two or more com-
ponents fail at the same time. It’s therefore wise to make the repair to broken units as
rapidly as possible. This, too, increases the availability.

COMPONENTS

Another way to increase the MTTF of a system is to avoid unreliable components. The
Bellcore component tables list the failure rates of many different types of components.
Without the tables in front of me, I’ll list the components I remember as having high
failure rates. These are components we should avoid in the design and construction of
the robot.

Connectors

Connectors of all sorts are lower-reliability parts. Every single pin on every connector
must be counted. Connectors generally work by spring pressure. A bent piece of metal
pushes on another piece of metal and thus excludes gas and dirt. Often, a wiping action
is made as the connection is made. The following problems can make connectors fail.

� Contaminants If we have too many contaminants or gases are not excluded,
corrosion can creep into the connection and ruin it.

� Currents In addition, if high currents move over the contacts, they can corrode
from too much heat.

� Vibration Movement can cause contacts to break open, interrupting signals.
� Operator error Service technicians can fail to seat connectors properly. Stating

a cynical view, the function of a switch or connector is to be installed wrong or
set to the wrong position. If connectors are not used, they cannot present such
problems.
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� Shock Sway and shock can tear wires out of connectors.
� Bad design Contacts are one of the hardest components for an electrical engi-

neer to master. They always take contacts for granted. The truth is, contacts require
quite a bit of experience to use correctly. If a designer puts too much current
through them, they can burn out. If the designer does not have sufficient voltage
across them, contacts can fail to make true contact. The failures occur well after
shipment.

Cabling

Wires and cables can fail for several reasons listed below.

� Abrasion Wires and cables will rub up against surfaces and abrade the insula-
tion away. In a robot, this could be a real problem. Cables should be well insulated
and run far away from sharp internal surfaces. Most PCBs are full of sharp
objects.

� Flexing Wires and cables will flex repeatedly inside a moving robot. Eventually,
one or more wires may break. Flexible cables are a discipline unto themselves in
the electronics world. It takes great experience to build them properly. If a cable
is not designed to flex repeatedly, see to it that it does not!

Transistors

Even though a processor may contain 4 million transistors, it may be more reliable than
a single transistor! In particular, power transistors can be a problem. Many engineers
are not well versed in keeping them safe and happy. As a general rule, try to avoid using
too many discrete transistors. If the design calls for a power transistor, make sure it’s
used well within its specifications.

Batteries

Batteries are basically canisters of chemical soup destined to leak, die, explode, and fail.
If we are lucky, they will not do all of these things at once. We’ll get more into safety
later. Most robots probably will have batteries in them. If batteries are going to be in the
robot, better study the technologies very well. If the batteries can be replaced periodi-
cally, preventive maintenance might even be warranted. Some batteries are more reli-
able than others. If the robot is designed for long-term autonomous operation, then
study spacecraft technology and the batteries used in satellites.
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Bulbs

Bulbs with filaments are quite fragile and will fail quicker than most. Even if the robot
does not move, bulbs are likely to fail at a rate similar to those in households. Gaseous
bulbs will also fail over time, much like overhead fluorescent bulbs do. Consider white
light-emitting diodes (LEDs) for illumination in a robot design. Many LEDs are specif-
ically designed to provide usable reading light.

Moving Parts

Moving parts are particularly subject to wear. Further, as they wear out, they may shed
debris. Lubricants, like oil, have to be used with extreme caution. They can easily
migrate to connectors and cause contact failure. Consider life testing any moving part
to a number of repetitions well beyond its expected lifetime count. Life testing involves
subjecting the relevant components with conditions that simulate years of use in a much
shorter test time. The following web site has a very nice treatment of reliability issues:
www.itl.nist.gov/div898/handbook/apr/apr.htm.

Safety
If the auto industry were like the computer industry, a car would now cost $5, would
get 5,000 miles to the gallon, and at random times would explode, killing all its
passengers.

— John Chambers

Safety issues can be divided into a few different categories. Human safety is paramount.
I suppose that’s why they started shooting chimps into space first! After human safety,
we consider the safety of the mission, so it runs to completion.

HUMAN SAFETY

Robots come in all shapes and sizes. Some popular TV robot warriors are a couple of
stories tall and spit flames. Certainly, these robots present a threat to human safety, just
from their physical prowess. That said, I’ve opened up my son’s broken Furby robot.
Though furry and small, it did die an ugly death by catching fire, emitting smoke, and
landing outside the house in a snowdrift. Further problems were probably forestalled
because the toy was properly designed to conform to applicable safety regulations,
which limit the size of such fires. And all this happened just when I was getting used to
speaking Furbish with the little guy.
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As an aside, groups of people are significantly worried about the very presence of
robots. One such group is the Anti-Robot Militia (http://unite-and-resist.cloudmakers.
org). It’s the one group mentioned in this book that I find a bit disturbing for a list of
reasons that include, among other things, incitement to violence. But I include it here
for reasons of balance, intellectual curiosity, humor, and a minor sense of civic duty.
I believe that at least some truth can be found in the utterances of all people, if one reads
with judgment, care, and discerning eyes. I still don’t quite know what to make of
the site.

Let’s get back to the topic. Many aspects of robot design can cause problems, even
injury, for designers and users of robots. To avoid such problems, consider designing
the robot according to published safety standards such as UL or CE. Safety agencies
such as Underwriter Labs and TUV can provide written guidelines. Advice herein can
provide guidance, but to be sure about the safety of the robot’s design, consult these
organizations. These groups publish safety regulations and offer testing services at their
labs. At the very least, purchase the relevant safety specifications mentioned at www.ul.
com/robot/. Further sites to check out include www.tuv.com and www.1metlab.com.

To supplement the safety recommendations from the standards agencies, here are a
few more pointers. If, for any reason, information herein conflicts with information in
the safety standards, follow the safety standard first and foremost.

Panic

Any robot should have a panic button that is red, visible, and intuitive to use. Make it
his nose if need be, but don’t forget to put one on. The button should stop all robot activ-
ity and shut down the power systems at the power source. Once somebody is scared
enough to press the button, it must provide immediate relief to all concerned. That said,
don’t forget that every kid (big and small) will be sorely tempted to press the button.
(Am I right out there, kids?) If the robot is carrying out some critical function that
should not be interrupted lightly, then put some warning, or kidproof shield, over the
panic button.

Batteries

As a reservoir of energy, batteries present a natural threat to humans. They come in all
shapes and sizes and are sold over the counter. But the more exotic batteries, with char-
acteristics of particular interest to robot designers, can be much more dangerous than
the batteries sold in stores. They look very much the same since they are designed for
the same types of battery holders. Take as a clue, for instance, the warning on many toys
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against using rechargeable batteries in the toy. The following sections discuss some of
the things that can go wrong with batteries.

Leakage Batteries contain chemicals that can leak out and ruin portions of the robot.
In the case of a car battery, for example, this would be a real possibility if the batter is
turned upside down. Liquid acid will ruin anyone’s day. Other batteries contain other
more solid chemicals that still present leakage hazards. Treat batteries like a container
of chemicals. Make provisions outside the battery to contain any leakage that might
occur. If serious concerns exist about leakage, search for a type of battery that will not
“leak,” if such a battery exists.

Explosion Some batteries are capable of releasing their energy very rapidly. This can
happen if they are shorted or if the robot’s power supply shorts out. When this happens,
energy is dissipated inside the battery and an explosion can ensue. If the design calls
for a type of battery that can explode under these circumstances, then consider the fol-
lowing safety steps:

� Read and understand the manufacturer’s warnings.
� Determine just how big such an explosion might be and treat the batteries as an

explosive.
� Consider housing the battery in an explosion-proof container so it will not cause

damage during a catastrophic event.
� Educate all the engineers about how to handle the batteries, or restrict the number

of people authorized to do so.

Jewelry I include this section in addition to the following warning about fire for a very
specific reason. Some batteries can release massive amounts of current in a very short
time period. If a designer is wearing a ring that shorts out the battery, the ring can heat
up sufficiently to take off a finger. Do not wear jewelry when working with batteries.
For that matter, designers working with electronics should consider removing jewelry
during work hours. I would include rings, watches, and necklaces in this category. Freak
accidents happen much more often than expected.

Fire Just as batteries can heat up jewelry, they can also start fires inside the robot’s
wiring. Consider putting a suitable fuse or circuit breaker in with the batteries. If a short
circuit someplace within the robot should occur, this may help. Don’t forget to use UL-
rated wire and PCB components that are somewhat fire resistant.

Trauma Don’t drop batteries on your foot! I’m just waiting for such a warning label
to show up. I think it’s only a matter of time.
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MECHANICAL THREATS

An interesting story comes to mind, so far uncorroborated. Coal power plants have had
a problem matching their power generation to the required loads. Coal fires take a long
time to burn out, so energy can be wasted in the evening hours as people retire for the
night. Power companies have been looking for ways to store the wasted electrical energy
so it can be reused the next morning.

Clever designers decided to investigate putting the energy into a flywheel. The fly-
wheel was to be a large rotating wheel driven by a motor/generator. In the evening, they
would speed up the flywheel to store up some of the wasted energy from the coal fires.
In the morning, the flywheel would spin the generators to reclaim the energy before the
coal fires were completely burning. The flywheel was to be massive, an intimidating
hunk of spinning concrete and steel. Clearly, if the flywheel ever came loose, it would
be quite dangerous. The design plan was to set the flywheel on the edge of Long Island
Sound, a 10-mile wide body of water between Long Island and Connecticut. If the fly-
wheel ever broke loose, it would roll into the water and thus dissipate its energy.
Calculations showed it would only get three-quarters of the way across to the
Connecticut shore before it rolled to a stop! I’m guessing this information was cold
comfort to the beach residents in Connecticut.

In general, inspect the robot design for places where energy is stored. It does not take
much energy to create injury or to cause a breakdown in operation.

The following is a list of items to check for and help avoid mechanical problems:

� Leverage Even a small force can be greatly magnified with leverage. Inspect
the robot design for hazards that might be created by excessive leverage or force.
Such hazards probably require shields to prevent accidental injury.

� Sharp parts If the robot does not require sharp-edged parts, round them off in
the design phase.

� Fast moving parts Even lightweight parts can cause injury if they move fast.
Shielding or redesigning the relevant parts might be in order.

� Stressed parts Parts put under stress might break catastrophically. Portions of
the part may fly off. Examine all parts of the design for hidden stress and at least
understand what happens should the part break.

SOUND PRESSURE SAFETY

The human ear can only withstand certain sound pressure levels before injury occurs to
the ear. If portions of the robot are to be noisy, then either calculate the predicted noise
level or measure it directly.
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LASERS AND LIGHT SAFETY

Radiation, at any frequency, can damage humans. The government regulates the power
that lasers can emit so it is “eye safe.” Although most small pointer lasers are eye safe,
it’s still not a good idea to employ such radiation. Be very careful about the amount of
light and laser light that the robot will emit.

FIRE AND ELECTROCUTION

UL and other companies we’ve discussed publish testing and design guidelines that
should be followed.

Environmental Considerations
In the design of a robot, we must pay attention to a number of environmental consider-
ations. Several factors in the robot’s environment will be critical to its reliability and
performance. Other factors are a bit less important. Among the factors to consider are
temperature, vibration, vandalism and theft, humidity, altitude, and contaminants.

TEMPERATURE

Most electrical systems and appliances are designed to work in an office environment
near 25 degrees centigrade (25C). Commercial-grade electronics are designed to work
from freezing to hot (0C to 70C). Most off-the-shelf systems have temperature specifi-
cations in this range. Industrial systems, designed to be a bit more robust, have a tem-
perature range of -40C to 85C. Military systems often have temperature specifications
of -55C to 125C. Separate temperature ranges are quoted for storage and for operation.
The worst-case temperatures often occur in vehicle applications, especially the very
high temperatures that can occur in car trunks.

In the design of the robot, study the temperature limitations of all the components.
Often the battery and displays will be the least robust parts, with a limited temperature
range. It is possible to violate temperature specifications, but it would be taking
chances; the system might fail. It is also possible to test the completed system at high
and low temperatures to help ensure that it will be able to handle temperature extremes.
If a system is exercised for about 4 days at its high temperature limit, it’s roughly com-
parable to 30 days of aging in the field.

Most semiconductors and other parts have what is called a bathtub curve for relia-
bility. Most of the failures occur during the first few months (infantile failures) and the
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last few months (end-of-life failures) in the lifetime of the robot. Hence, the failure rate
curve over time looks like the outline of a bathtub. By baking the robot for a few days
at an elevated temperature, many of the infantile failures can be precipitated in the man-
ufacturing bay, instead of out in the field (see Figure 4-1).

Here are a few web sites discussing this effect:

� www.asq-rd.org/articleBathtub.htm
� http://ranger.uta.edu/�carroll/cse4317/reliability/sld004.htm
� www.itl.nist.gov/div898/handbook/apr/section1/apr124.htm

VIBRATION

Vibration can tear a robot apart. The vibrations might come from an external source,
like a vehicle the robot is riding in, or the vibrations might come from the robot itself.
But how does one go about quantifying the threat and preparing for it?

Vibrations are generally measured in terms of accelerative forces and frequency. I
will detail my personal method for dealing with this problem. These are methods that
have worked for years to toughen up designs. Also, a short list of web sites covering
vibration analysis is provided later for further information.

First and foremost, to really condition the robot to withstand vibrations, purchase or
make a vibration table. Branford makes the table I’ve used before. They’ve since been
acquired by Cougar Industries (www.cougarindustries.com/).

The table is basically a steel slab sitting on rubber pillows so it can vibrate. Bolted
to the underside of the table is a motor with an offcenter, rotating weight. As the motor
spins, the weight vibrates the table. The faster the motor goes, the faster the frequency
of vibration. The further offcenter the weight, the stronger the vibrations are in terms
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of amplitude. Be aware that such tables have a weight limit. The robot must be light
enough that the table can accommodate it and still be able to vibrate. The vibrations are
effectively three-dimensional with each dimension’s vibration approximated by a sine
function. The amplitude of the vibration is as follows:

The accelerative, second derivative is d2x/dt2 � -K � sin (v� t ). It’s easy to meas-
ure the vibration forces with a strobe light. Strobe lights can be found at these sites:

� www.aaroncake.net/circuits/strobe2.htm
� www26.brinkster.com/strobeit/
� www.cpcares.com/9940.html
� www.123dj.com/l_strobelights.html

Decide how fast to vibrate the robot during the test. Obtain a strobe light and increase
the strobe frequency until it matches the frequency of the vibration. The frequency of
the strobe will give v. The amplitude of the vibration can be measured with a ruler as
the vibration slowly moves back and forth (looking like it’s almost standing still) in the
strobe light. Using these methods, we can determine both K and v. The computed accel-
eration from the second derivative above can be converted to G forces, the most com-
mon method of specifying vibration force. Using these methods, I routinely test
products for up to a minute at 10 Gs of vibration force at 10 Hz. Components that react
badly to vibrations will appear to sway more in the strobe light than the rest will.
Corrections can then be made to their mountings.

The following URLs have further information about vibration analysis:

� www.cage.curtin.edu.au/mechanical/info/vibrations/
� www.cage.curtin.edu.au/mechanical/info/vibrations/tutor.htm
� www.mech.uwa.edu.au/bjs/Vibration/default.html

Believe it or not, I have always added one extra extreme test during the design of a
product. Put the product into its shipping container and drop it repeatedly from a height
of three feet. Then roll it end over end down the floor for 100 feet. Open the package,
look for damage, retest the robot, and change the design to fix any weaknesses that are
revealed.

VANDALISM AND THEFT

I worked with a large company that prided itself on the design and manufacture of light-
ing systems. These systems would go into large, big-city high schools’ auditoriums to
control the lights on stage. A new design was being tested when we realized that the

x �  K �  sin 1v �  t 2
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high school kids were chewing the buttons off the console! So be wary; a robot is cer-
tainly a tempting target for curious people. It will suffer damage from playful and mali-
cious people alike. It may fall into the hands of operators with less than good intentions.
Prepare for it.

HUMIDITY

Designing a robot for humid environments can be quite difficult. Review all the speci-
fications for all the parts. Rust and mildew can certainly become problems. In some
cases, condensation can form and short things out.

ALTITUDE

Batteries and LCD displays can become problems at high altitudes. Read the specifi-
cations for all the components to set the altitude limits for the robot.

CONTAMINANTS

If the robot must function for long time periods (years) or will be subject to a polluted
atmosphere, consider an accelerated test for corrosion. The Network Equipment Build-
ing System (NEBS) standards were written to help guarantee the reliability of phone
switching equipment at the phone company. One of the tests involved subjecting a sys-
tem to a chemical fog for a week or two. The concentration of chemicals is sufficient to
simulate years of operation in a poor environment. Contact Metlabs or others to inquire
about the testing regimen (www.metlab.com, www.metlab.com/pages/nebs.html).

Common Sense
Many design rules for robots (or other complex systems) come naturally with experi-
ence. Here are a few words of basic advice.

COMPLEXITY

We’ve talked about it before. Keep things simple. Instinct should tell us if things are too
complicated. Chop the robot down to size periodically during the early design phases.
Take stuff out, eliminate actions, remove conditions, and take heed if people wrinkle
their brow when they hear how things are supposed to work.
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COMPARABLE SYSTEMS

During the design of the robot, look for comparable designs. Others have already
designed many of the subsystems in one fashion or another. If the design of the robot
is a significant departure from standard designs, then conduct more reviews of the
design. With luck, new ground is being broken. Without luck, a disaster might be in the
making.

ACID TEST

When I was at college at Cornell, a rumor was going around, the very sort of thing
spread by young college kids with little experience. To this day, I’m not sure if it’s true
or not. It seems I have gained little sense since! The campus has two deep gorges, one
spanned by a tiny suspension bridge that wobbles as it’s crossed. It was said that the
architecture school conducted a design contest for the bridge. The student with the win-
ning design, returned and was surprised to see his design spanning the gorge, and
refused to cross the bridge!

We must be willing to be cradled in the metal arms of our creation. If we tremble at
the thought, we should review our designs!

PLAN ON FAILING

Face it; nothing works as planned. Unforeseen circumstances always take place in life
and in projects. The prudent thing to do is to plan for recovery while standing amid the
ashes of failure. A couple of precautions can be taken.

Watchdog

Most complex computerized systems will just plain fail now and then. The reasons may
never even be discovered. It is often helpful to design a “watchdog” circuit that can reset
the computer system or restart the robot if it fails to regularly interrogate the watchdog.
The existence of a watchdog circuit generally increases the availability of the robot and
only rarely interferes unnecessarily.

Backup Plans

We might as well plan for portions of the robot to fail. If the robot is to be autonomous,
or in a position where it cannot be repaired, then special attention should be paid to
backup systems. We already talked about N � 1 redundant systems, but other options
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are available. Consider the recent success of an interplanetary probe. The main com-
munications antenna failed to operate, but it had a slower backup radio system. The
ground controllers cannibalized part of the bandwidth of the backup radio to send the
mission data back to Earth. The mission was still a success.

TESTING

Through testing, it’s possible to decrease the likelihood that the robot will fail. We can
gain confidence in the capability of the robot to function under adverse conditions.
Further, through stressing the robot, we can precipitate failures that might occur early
in its “career.” Semiconductor makers, in an effort to produce more robust products,
routinely test their integrated circuits (chips) before shipping them. The chips that are
not tested for temperature go out with the commercial temperature rating. The chips that
are tested at higher temperatures get the industrial and military temperature ratings.
Some manufacturers may sample test batches of chips to estimate the performance of
the entire chip population. This is a valid technique but would be useful for us only if
the population of robots was large.

We’ve already talked about temperature testing and vibration testing. Each can be
used to increase the reliability of the robot prior to use. These techniques can be used
in the production of robots, but they are also of great use during the design of the robot.
Weaknesses in the design will become apparent; they can be fixed prior to further
development.

A further testing technique, usable during development, is more subtle. As a robot
designer, don’t forget that others will see the robot in a much different light. Never
underestimate the ability of a three year old to walk up to the robot and say, “What hap-
pens if I do . . . this?” Thus will be discovered a catastrophic weakness in the design that
has been sitting right on the surface unobserved.

Beyond such dramatic tests, consider putting together a series of alpha and beta tests if
the robot is to be manufactured. The definitions of these terms vary, but I can outline mine.

Alpha testing is a situation where we give the robot prototype, or the initial few pro-
duction units, to friendly end-users who can use it and provide constructive criticism.
Alpha testing is a time period where distribution is very limited, failures are expected,
and corrections are still being made.

Beta testing is when production robots are sold in limited quantities to end-users. The
goal is to see just how things go before jumping into full production. The end-users may
or may not be aware the units are being beta tested. At the end of beta testing, some cor-
rections can be made, and full production and distribution ensues. Consult the follow-
ing web site to learn more about the process of testing: www.cs.berkeley.edu/�jasonh/
presentations/SoftwareTesting-cs169-nov1998/.
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Emissions
Cells phones often drop out or have significant static on the line in the presence of inter-
fering appliances like computers. Car radios often buzz when we drive under power
lines. Computers can bomb completely if they get hit with a big static spark. These
occurrences are caused by electrical interference from outside the appliance. Thus, two
goals for the design of the robot spring to mind:

� We should make the robot impervious to interference. This way, it will be more
reliable.

� To be a good electric neighbor, we should design the robot so it does not create
interference that will be picked up by other appliances.

For reasons of symmetry, it turns out that these two goals are one and the same. If we
can keep interference from entering the robot, then interference cannot get out of the
robot either. To accomplish the goals, we will employ two basic methods:

� Generation We will try not to generate interference within the robot. If we min-
imize the interference we generate, we will not have to struggle to keep it within
the robot.

� Shielding We will try to put up sufficient shielding around the robot to help pre-
vent our interference from getting out. Further, these shields will help keep out-
side interference from getting in.

As a practical matter, we cannot be perfect in either endeavor. The robot will gener-
ate interference, and it will spread beyond the walls of the robot. We can use many tech-
niques to minimize interference and accomplish our goals.

GENERATION

To appreciate just what interference is, we should go back to the works of the master.
In 1873, James Clark Maxwell (see Figure 4-2) set out the very basic laws of physics
in his publication A Treatise on Electricity and Magnetism, including the formulas
known as Maxwell’s Equations (for more info, access www-gap.dcs.st-and.ac.uk/
�history/Mathematicians/Maxwell.html).

The presence and movement of electrons creates electrostatic and electromagnetic
fields. These fields create action over a distance. A magnet, driven by force, near a wire
can move electrons in the wire to create a current (creating a generator). A current, mov-
ing in a wire near a magnet, can create force on the magnet (creating a motor). In both
cases, the fields involved are acting over a distance. So, too, electrons moving within
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the robot can affect other electrons over a distance, the popular notion of interference.
Interference coming out of the robot can be measured with antennae outside the robot.

To illustrate this effect, take an AM radio and tune it between stations, where only
static is heard. Turn up the volume and put the radio down next to the computer. Execute
a few computer programs to exercise the computer. The inner workings of the computer
will be audible on the radio!

So how do we prevent the generation of interference inside the robot? First of all, we
cannot prevent it completely. All electrical systems generate interference. The trick is
to keep it well below the tolerable levels prescribed by the governmental groups that
regulate it. The Federal Communications Commission (FCC) does this, and many for-
eign governments enforce the CE mark overseas. Many techniques are available for lim-
iting the amount of electrical emissions generated within a robot.

Use Low Frequencies

All electrical signals emit interference, but lower-frequency signals tend to emit less.
Further, the FCC is more worried about higher frequencies than lower. As an example
of what can be done, some computers are optimized to run at clock frequencies of 32
kHz. This is a much slower clock than most computers have. As long as the computer
is fast enough to accomplish its work, such a clock speed will suffice. Don’t run the
computer in the robot at clock speeds that are greatly faster than needed.
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Use Long Rise-Time Signals

No signals inside the robot really change from low to high voltage instantaneously. If
they did, the emissions would be of unlimited frequency. As a practical matter, signals
rise over a certain time period; let’s call it T. When this happens, emissions centered at
a frequency of about 3/T predominate in the emissions spectrum. Generally, FCC reg-
ulations restrict higher-frequency emissions to lower values, so it makes sense to limit
the rise times of signals within the robot, which can be done in several ways:

� First, we can use integrated circuits that have slower signal rise times. Use the chip
technology that is just fast enough for the robot, but not much faster.

� Use lower clock frequencies. Although this does not guarantee slower rise times,
it often helps.

� Attenuate the signals with filtering components. Electrical engineers often must
alter signals so they will not generate transients on a PCB. Transients on one sig-
nal can create errors on that signal or on other signals. As the transients are atten-
uated, so too are the high-frequency components of the transients. It’s a fine art
eliminating signal transients, shown at www.commsdesign.com/main/9802fe4
.htm and www.eedesign.com/editorial/1996/pcbdesign9605.html.

Grounding

Make sure that signals travel over a ground path that carries their return signal. All the
electrons sent down a signal trace balance the corresponding electrons returning in the
ground plane beneath the signal. If the ground plane has gaps in it, then the return elec-
trons must trace a different path back. This creates a loop of electrons moving about,
generating more interference. Avoid splitting ground planes in a PCB layout.

� www.devicelink.com/mddi/archive/96/08/011.htm
� www.cae.wisc.edu/~benedict/pcbpres.pdf

Filter the Power Supply

As logic circuitry switches signals from one voltage to another, the power supply strug-
gles to deliver current to each logic node. Since it takes time to move electrons, it makes
sense to store electrons in the places likely to need them most. Power supply capacitors
are designed to provide this power and to decrease the transients on the PCB. Consult
the following URLs to learn how to filter power supplies properly on a PCB.

� www.icst.com/products/pdf//note07.pdf
� www.quicklogic.com/images/pcb_de_1.pdf
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Linear Power Supplies

If the design can put up with some inefficiency, consider using linear power supplies.
Switching power supplies can generate a considerable amount of interference emitted
both as RF and through the power line.

Isolate Noisy Circuitry

Keep very high frequency circuits well away from input/output (I/O) circuitry that leads
to the outside of the robot. Interference can move right through PCBs to neighboring
circuits. Try to isolate I/O circuitry as much as possible from all other sources of inter-
ference on the PCB board.

Quiet Motors

Beware of motors with brushes that create sparks. Some motors are more quiet than oth-
ers. It’s a good bet that if sparks are visible when looking from the edge of the motor, it
is generating a significant amount of interference. If no qualitative way to evaluate a
motor is available, try using the detuned radio method mentioned earlier. A noisy motor
will make a radio crackle and pop.

Use Pretested Components

It is possible to buy pretested components, such as power supplies, that have already
been tested for emissions. The manufacturers can provide profiles showing the emis-
sions at various frequencies. The testing agencies will often take these profiles into
account. If they feel the tests have already been run, they may skip some tests. However,
from experience, it seems to be the case that pretested components don’t always live up
to their reputation. A power supply that has already been tested and certified will actu-
ally fail to meet emission specs in a new robot. It’s always wise to repeat all the tests
from scratch.

SHIELDING

So how do we keep interference inside the robot (and interference from entering)? First
of all, we cannot prevent it completely. All packages for electrical systems will allow
interference to leak through. The trick is to keep it well below the tolerable levels pre-
scribed by the governmental groups that regulate it. Many techniques exist for limiting
the amount of electrical emissions that escape a robot.
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Limit Openings in the Package

Interference can leak out of holes in the package, but given the fact that interference
waves have a definitive wavelength, there’s a trick we can use. Waves cannot easily get
through a hole that is too small for them. At most of the frequencies the FCC cares
about, holes of up to 1/8 of an inch (3 mm) in diameter are just fine. If the air holes, for
instance, are 3 mm in diameter, they can still provide cooling without letting interfer-
ence through. If the robot is to be used in environments that permit even less interfer-
ence, the holes may have to be made smaller again. The higher the regulations go in
frequency, the smaller the holes should be. This includes fan holes too; holes are holes!

One point must be made about limiting the size of holes in the package. When we
talk about limiting the size of holes to 3 mm, we are speaking about the longest dimen-
sion of the hole. If a hole is 3 mm wide and 9 mm long, it will not pass muster. The 9
mm dimension is 3 times too wide. The single worst types of holes in the package are
seams. Often, a cover is put on the package and screwed down. The cover may be 30
mm by 30 mm and be fastened down by several screws. Unfortunately, the 30 mm
seams will leak like sieves.

The interference that leaks out through such holes can be decreased in a couple of
ways. First, it’s possible to have a significant metal overlap at the seams. If the package
overlaps the cover by more than 1 mm, it’s possible to attenuate much of the interfer-
ence that may leak through. To be safe, have a large overlap. The alternative is to have
a spring-loaded metal barrier that acts to seal the seam. Companies sell strips of
stamped copper spring material that can be fastened down the length of the seams, much
like the weather stripping we use to seal storm doors against the cold wind.

Use Special Connectors

Connectors, and the external wires that will connect to them, are a prime place for inter-
ference to escape from the robot. Two characteristics of connectors must be considered:

� First, make sure the connector has a shielded, grounded shell. This means the out-
side shell of the connector is connected to the chassis and is grounded. The cable
that connects to the connector can thus also have a shielded connector and outer
metal jacket.

� Second, make sure that all the signals in the connector have attenuating filters in
series with them. Don’t forget; interference makes no distinction between input
signals, output signals, power, or ground. Interference can travel in and out of all
types of connector pins. Many connector manufacturers offer versions of connec-
tors with integral ferrite plates that will attenuate high-frequency interference on
every pin. The other option is to build filters into the PCB near the connector.
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Power Cord Filters

If a power cord or a charging cord is used, consider putting a ferrite filter in series with
the wiring inside the robot. Generally, this can be done with a couple of loops of the
power wire through a ferrite toroid.

Robots that will be manufactured in quantity will have to be checked for emissions
and certified to comply with FCC and CE standards. Several companies can assist with
this effort, testing the robot in various configurations. However, the charges for such an
effort can run into many thousands of dollars. Without experience, it is unwise to
attempt to control such a testing project. Professionals can be hired to represent a novice
robot builder during the design and during the testing process. During testing, the test-
ing companies will often overlook obvious fixes that can greatly speed up the testing
process. If the design effort has a professional EMI expert on the team during the test-
ing process, the testing technicians can be prodded into action and much money and
time will be saved.

Quality Issues
Some years ago, Japanese automakers made major inroads into the American auto mar-
ket. In large measure, this was due to their persistent attention to quality issues. Every
year their automobiles got better and better. Eventually, the American automakers also
began to adopt the Japanese quality processes. In recent decades, various names and
buzzwords have cropped up, including Total Quality Management (TQM), ISO9000,
continuous quality improvement, and so on.

Several aspects of quality processes have remained largely constant over all the dif-
ferent incarnations of quality control. Chief among them are the following:

� Continuous improvement The process of improving the quality of the robot
should not be a one-shot deal. Periodically, the robot’s design and manufacturing
process should be improved with an eye toward making the final robot better and
more reliable. Over time, if everyone on the design and manufacturing team
knows that continuous improvement is the goal, all aspects of the robot’s reliabil-
ity and quality will steadily improve.

� Quality reviews Once called quality circles, the review process simply sched-
ules periodic examinations of the robot’s quality. The team gets together, reviews
all reports of problems, and suggests improvements.

� Empowerment It is said that everyone on the development and manufacturing
team should be empowered to call a halt to design or production if a problem is
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suspected. As a practical matter, this may well be giving too much power to stop
production lines. But the fact is, unless everyone is on the ball and feels like they
can make a difference, then quality processes may not work. Empowerment puts
the emphasis on quality first and foremost.

� Process documentation Good quality control systems call for the documenta-
tion of the quality process. For a small group, this may prove to be too burden-
some. If the design and manufacturing group is 5 to 20 people, then consider
adopting formal documentation. Advice and documentation can be found at
www.isoeasy.org/ and at www.praxiom.com. A web site discussing some of the
basics is located at www.optants.com/tutor/ciptqm.htm.

Testing
Testing is an important aspect of reliability. The word testing has different definitions
for every engineer. This is because many kinds of tests exist, and they are all used to
accomplish different ends. Many test engineers have been able to make a career out of
testing systems. This section outlines the different types of tests.

STRESS TESTS

As we discussed previously, it’s possible to stress portions of the robot with various
environmental factors like temperature, vibration, and humidity. Many things can be
learned from stress tests, including

� The limits of operations At what point will the robot stop working and why?
As an example, it’s possible to raise and lower the robot’s temperature to find out
which components will stop working. Further, we can find out whether the com-
ponents break or just become temporarily inoperative. From such tests, the design
can be modified to make the robot more robust.

� Spec verification Will the robot work during a particular stress test? If it does,
then it’s possible to say with confidence that it will do so again. This is an accepted
way to verify that the robot can meet a particular specification. The specification
is often published along with the test method.

� Life testing If a significant number of robots are tested, it’s possible to develop
a statistically valid prediction for their lifetimes. Accelerated baking (at a high
temperature) can age components at a fast rate. The components to be baked are
slowly taken up to a temperature like 50° C and left to operate for days. Any fail-
ure to operate is noted. If enough components are in the oven for a long enough
time, it’s possible to then develop a predicted failure rate for the component. The
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components can be single components or entire robots. The statistics and math
behind the statistics are difficult. Some of the techniques are described at www.
asnt.org/home.htm.

PERFORMANCE TESTS

Most robots will have specific tasks they should be able to carry out. Some of these
tasks will be measured qualitatively and some will be measured quantitatively. Test
engineers make a full test regimen and then execute it to determine if the robot passes
muster and meets specifications. Each aspect of the robot’s performance can be meas-
ured, and the quantitative performance statistics can be gathered. Some performance
tests are as follows:

� Full test The entire test is executed and may take days to complete. The goal is
to get a complete read on how well the robot performs a baseline.

� Regression test This is a subset of the entire test and may be executed many
times. The test is short because it must be inexpensive to execute, since it’s per-
formed so often. The test is executed every time the robot is changed in any sig-
nificant way. The goal of the test is to have a reasonable chance of uncovering any
errors that were introduced during the changes. Periodically, to gain further assur-
ance, the full test can be executed instead.

� Unit tests Some software engineers segment the software programs into distinct
subsections. Each subsection has a specific function, which can be individually
tested. Along with writing a function, the software engineers sometimes write a
unit test for the function. When the software is compiled, the unit tests are all exe-
cuted to see if they still work. If the programmers accidentally changed the way
the function operates, the unit test for that function will likely fail and alert the
engineers of the problem.

� Use tests Designs are not human and can’t be confounded by many “what ifs.”
What if the robot is turned on and somebody forgets to connect a connector? What
if buttons are pressed in the wrong sequence? What if the battery wears all the way
down? What if the wheels lock up, will the motor burn out?

All these sorts of events should be tried at least once to observe the results. If any-
thing untoward happens, then either the manual should be rewritten to prevent the event
or the design should be changed.

Reliability, safety, and compliance are areas where experience counts. When in doubt,
seek experienced help and advice. Many technically good designs fail to pass muster
when these topics are considered. Plan your approach well in advance.
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DESIGN STEPS: HLD

Nobody really has a clear, documented record of the thinking that went into the design
of a robot, so we’ll try to document the series of steps and thoughts in a logical
sequence. Others would go about this in a different way, but it makes sense to give a
good solid example of how things might be done during the design phase.

Certainly, we should go about writing specifications for the project, just as recom-
mended in Chapter 1. But let’s suppose we already have a specification written. It makes
sense to take a deep breath at the beginning of the project and just define what success
will mean. With that done, and a reading of the specs, it’s time to start the high-level
design (HLD).

Power
Any robot design should start with a thorough analysis of the power requirements. We’ll
discuss power in a separate chapter, so let’s just mention it now in passing. Unless the
power source is sufficient to match the requirements, the robot cannot operate properly.
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To look at the power, we’ll need to look at weight, required activities, locomotion meth-
ods, operation time, energy storage schemes, automation, communications, and refuel-
ing (recharging).

Locomotion
We’ll get into the mechanics of the robot in another chapter, but we should mention it
now. We’ll need to look at the mechanics needed to move the robot, the power needed
to affect movement, the required speeds, and the requirement for reliability. We will
need to look at the degrees of freedom required. We can think of degrees of freedom
almost like joints in a human limb. The robot will have to bend various directions and
must have separate control over each axis.

With the requirements for movement and power estimates in hand, we have all the
basics roughed out. We know how heavy the robot is, how much it will have to move,
and what sort of power source we will use. This part of the HLD is akin to planning an
invasion in wartime, like the invasion of Germany in World War II. General Bradley
knew how many tanks were required and how far they had to travel. This allowed him
to quickly rough out preliminary plans for the fuel supply.

Automation
Next, with the basic logistics worked out, it’s time to look at the automation of the robot.
We can assume for the moment that the specifications have already been simplified, so
the HLD problems are straightforward. Further, we can assume that computerization is
already in the plan. During the HLD, we’ll look to simplify things further.

A computer can often take over tasks that might be performed in other ways. If we
can move some of the robot’s functions into software, we gain two advantages. First, we
can delay portions of the design until the software needs to be written. Second, we can
reduce costs. Software is free to the extent that software programs can be loaded into
robot after robot for free (once we own the software).

Here’s a specific example of what can be done in software. Suppose the robot has
rechargeable batteries. Further, suppose the specifications call for notifying the opera-
tor when the batteries are recharged. This can be handled in two ways:
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� We could use intelligent batteries that have the capability to communicate with a
computer. These batteries have special connectors that carry serialized signals to
a computer interface. We can program the computer to interrogate the batteries
and report on their status, but an easier way exists.

� If we are content with the accuracy it affords us, and if we are not worried about
the consequences of getting bad information now and then, we can simply simu-
late the batteries inside the software. We only need to know how long the batter-
ies have been drained by the robot and how long they have been charging. If the
simulation errs on the side of keeping the batteries charged, then the computer will
be able to perform the function entirely in software. What advantages accrue to
the design team? First of all, we will only need standard rechargeable batteries as
sold in the store. We will not need special batteries that can communicate. We
won’t need a battery interface on the computer. The robot will cost less as a result.

Many other functions can be moved from hardware into software. Just be aware that
what the computer and the programmers can do is limited. Times will occur when the
inclusion of hardware will obviate the need for painful and expensive programming.

Reexamine the robot design during the HLD review process. Have the team meet and
discuss the welfare of their new offspring. Bring in outside advisors for the review meet-
ing who may be able to spot things others cannot. Several questions should be
addressed, including

� Is it simple enough and reliable? If team members are uneasy about sections of
the design, that’s a place to start the discussion.

� Take a close look at all the parts that might have high failure rates or might be
environmentally sensitive. Reduce the need for those parts if at all possible.

� Reduce the need for risky operations or mechanics. The best mechanical designs
tend to be extremely simple.

� Look for places failures could occur. It does not take an expert to sense where a
design may have problems.

� Take a look at the requirements for automation. What algorithms will be used?
� Is the software simple enough? Are the programmers running wild? (Oh yes, they

will do that given too much sugar!)
� Can the software cause failures all by itself? Software reliability is a major tech-

nical arena with conferences, toolsets, specialists, and so on.
� Are there sufficient design margins? Do the actuators, batteries, and computer cir-

cuits have more than enough horsepower to achieve their goals? It’s wise to over-
specify by a significant margin when specifying these items. Most projects expand
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in a somewhat unplanned way. So get a jump on it and reserve spare resources the
robot can draw upon.

Once the basics of the robot have been roughed out, and the HLD has been written
down and reviewed, it’s time to get fully organized for development. No engineer likes
to wait for another engineer’s work to be completed, nor do they appreciate being stalled
for either decisions or resources. It’s important to put together working guidelines and
plans that make things work smoothly. Here’s one suggested way to help make this hap-
pen.

Divide the team up into independent groups. One group could handle the mechanics
and power systems. A second group could handle the automation. Have the teams sit
down at the beginning and work out all the interactions between the two groups. The
following issues should be addressed in this particular case:

� What signals will the mechanics provide to the computer, and what signals will
the computer provide to the mechanics?

� Sit down, draw out, and explain all the major movements and functions of the
robot in storyboard form. Not everyone will have read the specifications. Further,
many people cannot simply read specs and visualize the operations. Some people
have to see things and hear them before they will fully understand.

� Discuss which tests will be performed and who will document the test regimens.
� Discuss which Computer-Assisted Design (CAD) systems will be used for

mechanical and electrical design. Ideally, these systems should be integrated
so that it is easier to fit the printed circuit boards (PCBs) into the mechanical
chassis.

� Discuss how the mechanics will fit inside the robot. Although a CAD system can
be used to align things, almost nothing can be a substitute for an audit of the crit-
ical areas in the robot. As an example, let’s suppose we are designing a PCB that
must fit within the robot. Let’s further assume that the CAD systems are not inte-
grated, as is often the case. Make a spreadsheet of every interaction point within
the robot where the PCB might interact with the mechanics and packaging. By
interact, we mean touch or require accommodation. For each of the interaction
points, enter all the relevant dimensions for that point into the spreadsheet, includ-
ing XYZ coordinates. With a thorough tabulation of the interaction points, it is
much easier to determine if the PCB will fit within the robot’s mechanics without
an error. Without such attention to detail, it is very easy to suddenly realize that a
post is right where we thought the PCB would go. Make mockups, if need be, out
of Styrofoam and cardboard. Just don’t let the “customer” see it!
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� Agree on the methods of communication between the two teams. Meet as often as
necessary to maintain the proper flow of information.

With all these details squared away, a good project manager can keep both teams busy
during development. Stay in touch with all the engineers on a daily basis and stay alert.
Problems can develop quickly. Move as rapidly as possible toward the execution of the
first test regimen and the project should go well.
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ENERGY AND POWER SYSTEMS

The power systems of a robot are central to its health, reliability, and effectiveness. The
power systems include all the elements of the robot that work together to generate, use,
and conserve power. It is very difficult to control the power profile of a robot. It’s crit-
ical that the design team starts early on a plan for power control. Further, it’s critical that
one engineer be in charge of the effort. Ideally, if a computer is involved, give the task
to the engineer that can control the power-saving features of the computer processor
itself. Every component of the robot, down to the last nut and bolt, affects the power
consumption. We’ll get into just why that is the case later.

For the moment, let’s take a big step back and perform a mental exercise. Imagine the
robot we want to build. Visualize its form, shape, and mass. Now let’s take off our col-
lective eyeglasses and view the robot as a big, fuzzy hunk of metal and plastic. It’s just
a mass of material, portions of which may move from place to place. Will it have enough
fuel to get where it’s going and to perform its task? With a battery-powered robot, this
is a critical question. Viewing the robot as a single mass makes it easier to make sense
out of the preliminary energy calculations.
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Energy
When the early rocket scientists first began to build rockets, they were immediately con-
fronted with some very basic laws of physics. How, for instance, could they put a satel-
lite into orbit? How could they put two astronauts on the moon and get them back?
Eventually, it all boiled down to one consideration: energy. Auditing the energy within
the robot is a great way to approach the design of its power systems.

The energy the scientists had to start with was rocket fuel. The Apollo moon-landing
problem was to take two astronauts and the Lunar Excursion Module (LEM) up to the
moon. How much fuel would be needed and how would it be done? They probably sat
down with a single pad of paper over lunch and roughed it out in 10 minutes. Lunch
probably went something like this.

They figured out the weight of the LEM and the astronauts at around 48,000 kg.
From that weight, they could figure out how much fuel it would take to move the LEM
from earth orbit up to the moon. Further, they could estimate the energy required to lift
the LEM and the Apollo spacecraft (129,000 kg) up into earth orbit in the first place.
They needed an efficient way to accomplish the task and came up with the three-stage
Saturn rocket concept. Shedding the Saturn rocket stages on the way up into orbit obvi-
ated the need to carry the entire rocket’s weight into orbit. I’m sure they finished the
raw energy calculations in just a few minutes. They came up with the requirement for
a three-stage Saturn rocket and crawler standing 111 meters tall and weighing 6 million
kilograms (about 6,000 tons). Then, I’m sure, they sat back and ordered another round
of margaritas!

The point is, the calculations are not hard, and they don’t take too long. We should
be able to rough out the energy requirements of the robot rather quickly. But where do
we start?

The very first thing to be done, much like the rocket project had to do, is to forecast
the energy that will be required. We know the approximate size of the robot we want to
build. We also know roughly what sort of motions and actions the robot will have to
take. We can forecast the amount of energy the robot will use for movement once it’s
designed in two different ways: using calculations or using empirical measurements.

CALCULATIONS

By looking at the mass of the robot and knowing the actions the robot must take, we
can often calculate the energy that will be required. For example, if we know the robot
weighs 50 kg (batteries included) and must climb a 6 meter ladder 10 times a day, we
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can determine the potential energy required to climb the ladder using the formula PE
� m � g � h:

Since 1 joule equals .000278 watt-hours, 2940 joules equals 0.817 watt-hours.
Table 6-1 outlines the watt-hour ratings for rechargeable batteries.

Certainly, many other battery technologies are available, but the preliminary calcu-
lations show that just one AA NMH battery should carry enough energy to take a robot
up the ladder once. We require 0.817 watt-hours of energy and the battery can contain
1.8 watt hours. We have a margin of about 2 to 1. That’s not too bad, hauling a robot the
size of a 12-year-old boy up a long ladder with one battery. Clearly, to do it 10 times,
we’ll need 10 � 0.817 watt-hours, or 8� watt-hours. So we’ll need a couple of D-size
NMH batteries to provide 15� watt-hours. We’ll see in a bit that a margin of 2 to 1 may
not be enough, however.

The astute observer would note that adding more batteries to the robot alters the
weight! That’s quite true. Simply add the battery weight to the robot’s weight, and per-
form the calculations again. Eventually, everything will pencil out.

PE � 50 kg � 9.8 m/s2 � 6 m � 2,940 joules
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TABLE 6-1 Rechargeable batteries’ watt-hours

BATTERY SIZE WATT-HOURS BATTERY MATERIALS

D 4.0 Nicad
D 7.8 NMH
AA 0.6 Nicad
AA 1.8 NMH

EMPIRICAL MEASUREMENTS

One other way to estimate the power the robot will need is to literally build a model of
the robot and try it out. Practically speaking, we do not have to build the entire robot;
rather we can simulate it with a hastily built mockup. It would suffice to just build the
drive mechanisms and load down the simulated chassis with the proper amount of
weight (perhaps with bricks). Then the simulated robot can be put through its paces and
the power drain can be measured directly. This will prove to be quite an accurate way
of gauging the amount of energy that will be required. It takes into account almost all
the inefficiencies that can throw off an energy prediction that might be only calculated.
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COMPARISONS

Sometimes we can find systems that must perform tasks similar to what our robot must
perform. For instance, if the robot must weigh 3,000 lbs. and carry 4 people up a moun-
tain road, we can just look to a similar sized car and try to emulate its engine and
mileage. If the robot must shred celery into small edible bites, we can take apart our
Cuisinart and see what kind of motor it has. For that matter, if the comparisons are very
close, perhaps we can chop down a Volkswagen or a Cuisinart, build it into our robot,
and be done with it!

Don’t forget that we have been calculating and measuring the energy required to
move the robot. We must also provide energy to power the computer systems, sensors,
taillights, and all the other circuits on the robot.

Once we have an estimate of the energy that’s required, we must back off a bit and
add some design margin to the robot. As a practical matter, theoretical calculations of
work are very rough. Motor inefficiencies, friction, and many other inefficiencies use
up energy from the battery in useless work. It makes more sense to have a 4:1 (or higher)
ratio of energy to required energy. Translated to efficiency, we only expect our robot to
be 25 percent efficient. If the robot is going into space, the designers will want to do
better. If the robot is going across the room, more margin for error exists since it can be
serviced or redesigned. Figure 6-1 shows a typical 20-watt DC servo motor operating
at about 25 to 50 percent efficiency. Note that efficiency depends upon the torque that
the motor must exert. Also, peak efficiency does not occur at maximum mechanical
power output.
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FIGURE 6-1 Electric motor curves: power and efficiency versus torque
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Energy Sources
Energy can be acquired and stored in many ways, but we won’t go into the different
types of battery technologies here and now. Articles about batteries and alternate power
sources can be found at the following web sites:

� www.powerstream.com/BatteryFAQ.html
� www.powerstream.com/tech.html
� www.motionnet.com/cgi-bin/search.exe?a=cat&no=1308
� www.batterystuff.com/battery/battery_tutorial.htm

Instead of talking about power sources directly, let’s list the characteristics we should
pay attention to in the search for power:

� Weight versus energy The weight of the power source is a prime concern in
satellites, mobile systems, and portable systems like laptops. Some battery and
fuel cell systems will be lighter per watt-hour than others. Certainly, any mobile
robot should be as light as possible to avoid expending unnecessary energy.

� Capacity How many watt-hours can the battery store? How is the end of its use-
ful life measured?

� Peak currents Some batteries are better than others at delivering large peak cur-
rents. Besides checking the magnitude of the peak current, determine how long
the battery can sustain such a current. It may not be able to do so for very long.

� Lifetime What mechanisms may cause the battery to fail as it ages?
� Temperature Will the battery function at sufficient levels over the required

temperature range?
� Recharging How is it recharged? Are there any special requirements?
� Cost How expensive is the battery and can it be readily replaced?
� Safety We discussed before the many hazards that batteries can present. Have

the proper safeguards been taken?
� Warm-up Will the battery require any warm-up time to function properly?
� Metering Is the battery smart enough to communicate with the computer?

Failing that, is the battery relatively predictable in its charge/discharge character-
istics? We may have to simulate the state of the battery in the robot’s software.

� Availability How special is the battery? Will it be supported by the industry for
some years to come? Will replacements be available on the open market?

Like humans, robots will only work well when fed enough and exercised within their
capabilities. Understanding energy, power and motion are key to building a successful
robot.
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ENERGY CONTROL AND SOFTWARE

Considerations
Most robot control system designers make an attempt to minimize power consumption
in the robot. This is true whether the robot is battery powered or not. If it is battery pow-
ered, then energy control is generally a critical part of the software design that must be
held in the forefront of all software design considerations. If software is written at first
without regard to energy control issues, it generally will need a rewrite. Even mundane
database and housekeeping software needs to be written with energy control in mind.

Crafting an energy control strategy is a fine art. It can be very difficult to scale back
the energy consumption of a robot and its computer. The finest designs use no extra
energy than is absolutely necessary. To accomplish this feat cleanly, project managers
and design engineers must pay attention to a few rules of thumb.
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PRIORITIES

Put energy control first. To successfully conform to energy control requirements, it is
almost always necessary to put this issue in the forefront. If energy control ever becomes
an afterthought, it just won’t get done right at all. Many decisions are made along the
way that could preclude retrofitting a control system with energy control at a later date.

LEADERSHIP

Keep one experienced person (the “energy czar”) in charge. As we mentioned in a dif-
ferent chapter, the project must have one single person in charge of energy management.
Ideally, it should be the person who best understands the energy control capabilities
built into the processor chip. The key word here is experienced. Although I deplore the
tendency of firms to exclude good engineers who just don’t have direct experience in
the technology of interest, this case does require such an approach. Energy control in a
portable computer system (like in a robot) is a very complex task, one requiring an
experienced hand. If multiple engineers are involved, they must also be coordinated by
this one experienced person.

PLANNING

Energy control will only succeed if the specifications are crafted with its specific goals
and requirements in mind from the very start. The energy czar should be in on all the
early architectural, specification, and planning meetings.

BE CONSERVATIVE

Don’t underestimate the effort. The czar will have software to write and tests to perform
all the way through the project. It’s a risky portion of the project and difficult to finish.
It’s also not unusual for difficulties to crop up late in the project. Even perfectly work-
ing software may suddenly fail (increasing the energy draw) for unapparent reasons.
Have patience and expect to work hard on this portion of the project. Test and retest the
energy draw with each new engineering change.

TECHNOLOGY SELECTION

Go with existing processor power saving technology. Complete control of energy in a
computer system generally requires the proper choice of processor. Some processors
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are better than others for this task. The point is, if the processor is designed to enable
the energy control you require, then it probably has special-purpose hardware built in.
Often, software drivers for the energy control hardware are already available. The over-
all energy control algorithm must take advantage of these processor features.
Attempting to circumvent them or to use them in nonstandard ways will likely mean
ruination. The processor designers probably had a difficult time getting things right and
it is easy to break their design. Stick to the basics and don’t be afraid to call the proces-
sor company.

CENTRALIZATION

Try to centralize the energy code. To function properly, energy control software must
often be spread over most of the software in the robot’s computer. Portions of the code
are in the flash memory boot code, the operating system, and the application code. As
the code spreads out like this, it starts to get “holes” in it. It becomes more fragile in
terms of its capability to provide proper energy control. Simultaneously, if multiple pro-
grammers are involved, programming discipline becomes more difficult. We must pro-
vide a simple, understandable application programmer’s interface (API) that will attend
to energy control properly. Fortunately, a couple of remedies are available:

� Keep it tight If the API code is written from the ground up, try to keep the API
small and confined to the lowest levels of code (the Basic Input/Output System
[BIOS] and a few drivers).

� Keep it simple If you must build your own processor drivers, and can get away
with it, don’t try to implement every feature the processor offers. Get the most
aggressive power-saving features of the processor working well first. If the other
features are also desirable, add them later if you can.

Now we should look at strategies for power control. Where do we start?
It makes sense to start with the specifications. While the specifications are being

written, we will probably have a sense of how difficult the energy control problem will
be. It makes sense, right then, to look at energy control in a larger sense and decide on
the overall approach. The government even has specific programs to encourage the
industry to decrease energy consumption (see www.energystar.gov).

Semiconductor companies and operating system companies work together to provide
a coordinated approach to power control. As an example, the community defining the PC
architecture has done this over the years. Committees meet once a year to ratify the
changes that all parties will make in their designs and publish documents specifying the
changes. The Windows Hardware Engineering Conference (WiNHEC) is one of these
committees (www.microsoft.com/winhec/default.mspx).
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The following URLs describe industry initiatives that are designed to save power in
computer systems.

� Mobile technology www.intel.com/pressroom/archive/releases/
20020304comp.htm

� Instant on www.intel.com/technology/IAPC/index.htm

It is a very complex task to bring the power consumption of a large computer system
way down. It’s much easier if the computer system is designed specifically for low
power. The system components probably were developed specifically for an energy-
saving situation. All the new software can be written to suit the requirements.

In PCs, the impetus for the setting of standards came from the portable PC market.
The trouble was that the entire architecture evolved from a desktop PC architecture that
had few power-saving features. As such, the design is too leaky to be useful as an
embedded design.

Energy Conservation
It makes sense to model the overall type of energy conservation states that the robot will
have. Computer companies give fancy names to these states, so I thought I would make
up my own names too. The energy control systems of computer control systems and
robots can be described using the same terms. Each energy state can be described with
a set of characteristics including how it uses and conserves energy, how the state is used,
and how the programmers interact with the software.

ENERGY PIG

This would be a robot that always runs at full throttle, whether it needs to or not.

� Energy use All the lights are on and no attempt is made to conserve energy to
speak of. The computer runs full tilt all the time, and the motors are continuously
trying to servo into the right position. Most of the components are using energy
at their maximum consumption rate.

� Conservation tactics No intentional energy-saving methods are designed in.
� Method of powering up None exists; it’s always awake and active.
� Delays The robot is always powered up, so no processing delays take place.
� Special uses Since the software always runs, no restrictions are made on the

types of systems that can be created this way.
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� Software interaction The software is unaware of power-saving measures, so no
energy API is needed.

ENERGY AWARE

This is a robot that incorporates one or two of the easier energy-saving tricks. Perhaps
the motors shut down if it’s not moving. Not much time was spent designing the energy
control.

� Energy use A few conscious attempts at energy savings are made.
� Conservation tactics The computer might use one lower-power state that

enables it to conserve power during its idle loops. The software turns some major
components off when they are not in use.

� Method of powering up Generally, both interrupts and application software can
bring the robot quickly back to a full operating state.

� Delays The robot powers up very rapidly since all the major software environ-
ments remain loaded in memory. Processing delays are very short.

� Special uses The software has few restrictions, so most robot applications can
use this type of energy control if it meets their requirements for conservation.

� Software interaction The software has minor API hooks to enable applications
to wake it up and put it to sleep. Since the software environments are always res-
ident, few other API calls are needed.

ENERGY EFFICIENT

This is a robot designed from the ground up to be efficient in its use of energy. The
motors rarely are powered up, the computer only runs when it has to, and all subsys-
tems are designed to use very little power.

� Energy use Energy use is greatly minimized. Most energy minimization tech-
niques have been used; only the most difficult ones are left undone.

� Conservation tactics The computer makes use of the most aggressive energy-
saving states it can. The software turns all major components off when they are
not in use.

� Method of powering up Generally, only interrupts from the timer or outside
stimuli will bring the robot back to a full operating state.

� Delays The robot takes a while to power up because many of the major software
environments must be reloaded into memory. Processing delays are not short.

� Special uses The software control algorithms must be able to withstand signif-
icant delays because of the sleep state of the processor.
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� Software interaction The software has a significant number of API hooks to
enable applications to store and retrieve environments, wake up the processor, and
put it to sleep. The API generally has hooks for both the boot Read-Only Memory
(ROM) and the application software.

ENERGY MISER

This is a robot that uses the bare minimum amount of energy to accomplish its tasks.
The best examples of this are space-traveling robots, optimized for solar power and the
conservation of energy. Mobile robots often have a similar design, especially if they
operate unattended.

� Energy use Energy is completely minimized.
� Conservation tactics Every subsystem is turned off when not in use. The bat-

teries have very long lifetimes and the robot will not drain them if left immobile.
The computer makes use of the most aggressive energy-saving states that it can.

� Method of powering up Generally, only interrupts from the timer or outside
stimuli will bring the robot back to a full operating state.

� Delays The robot takes quite a while to power up because all the major software
environments must be reloaded into memory. Processing delays may be significant.

� Special uses Generally, the application must be able to tolerate significant
delays on the part of the computer control system. This tends to restrict the use of
such drastic energy-saving methods to specialized situations such as handheld sys-
tems and unattended robots.

� Software interaction The software has a significant number of API hooks that
enable one or more deep-sleep energy states. Most of the application code must
be specially written in light of it.

Hardware Considerations
Nothing but hardware can use energy. Software cannot use energy directly without
commanding hardware to do to. The hardware itself must be well constructed so as to
not waste energy.

POWER SUPPLY

Certainly, the power supply is a very important place to start when trying to save energy.
In fact, any heatsink in the robot is a prime place to try to save energy. Energy wasted
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in heatsinks creates two problems. First, it’s a direct waste of energy. Second, the heat
must be dissipated. In battery-powered robots, these considerations are especially
important.

Regulation

A couple of different types of power supply exist, but the bottom line is that they all
waste some energy in an attempt to regulate the voltage going into the robot’s control
circuitry. The robot may be powered from power lines or from batteries. In either case,
the motors and control systems generate electrical noise as they turn on and off. Motors,
in particular, cause large power surges when they turn on and off. We all have seen these
sorts of surges when a large appliance starts up and the lights flicker temporarily. The
point is, even battery voltages may vary unacceptably during the operation of a robot.
We may not be able to feed the battery voltage directly into sensitive control circuits.
We also know that power from the power lines is not well behaved either; it needs clean-
ing up. For all of these reasons, robots generally have some sort of voltage regulation
circuitry or power supply. That said, before we go into a discussion of what type of
power supply to put in, let’s explore not putting a power supply in. What are the tech-
niques we can use to avoid a power supply?

Battery Power

Batteries are fairly stable voltage sources all by themselves. They do, however, vary
under certain conditions:

� Charge level The voltage on batteries will decrease as the level of energy in the
batteries decreases. Different battery technologies will decrease at different rates
over time. They have characteristic discharge curves with a voltage that decreases
in a predictable manner as the charge is drained out of them. Most rechargeable
batteries decrease rapidly during the first 5 percent of the discharge curve, level
out for 85 to 90 percent of the curve, and decrease rapidly in the last 10 to 15 per-
cent of the curve. Figure 7-1 displays a representative battery discharge curve.

� Voltage levels A few points need to be made about voltage levels. First, if the bat-
tery is being charged while it’s inside the robot, great care must be taken. An inex-
pensive battery charger, charging an open battery, doesn’t limit voltage. Instead, it
would attempt to deliver a much higher voltage, which spreads throughout the
robot. Batteries act like voltage limiters when they are being charged up and will
limit the voltage of a cheap charger. But if the battery opens up (or is simply
removed), the charger may fry the rest of the robot with abnormally high voltage!
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This is especially true if no power supply circuitry exists and the robot is running
off the battery directly.

� Internal resistance Batteries will all have different internal resistances. This
behaves much like a resistor in series with the battery. As the battery ages, this
resistance may change. When a motor or other heavy load, places a sudden
demand on the battery for current, the voltage of the battery will change quickly.
Make sure the rest of the robot’s control circuitry and sensitive instrumentation
can take the sudden voltage transient on the power supply.

� Lifetime Don’t forget that the ability of batteries to store energy will change
over time. Many types of batteries (with different internal chemistry) will lose
their capability to store power as the battery ages. Within the battery, chemicals,
gases, and metals migrate or slowly corrode so they are no longer able to fully
contribute to energy storage. Make sure the robot’s circuitry will be able to func-
tion just as well when the robot and its batteries reach old age (see Figure 7-2).

Power Requirements

If we are trying to power a robot using just the battery as our power supply, we need to
limit the number of different voltages that will be needed within the robot. This may
mean that all the electrical components must be selected so they can work off the same
voltage. This becomes quite a challenge when we try to pick motors, sensors, and com-
puters that all have similar requirements for voltage. So what voltage should we try for?
High voltage, for example, is not a good choice for running computers or most sensors.

Motors To complicate things further, low voltage does not work well to move motors.
We can use very low voltage drop Field Effect Transistors (FETs) to control the motor

166 CHAPTER SEVEN

FIGURE 7-1 Battery voltage varies during a discharge cycle.

Battery Discharge Curve

Volts

Time

07_200256_CH07/Bergren  4/10/03  3:30 PM  Page 166



windings and keep the efficiency up. Semiconductor companies sell chips specifically
designed to control motors in an efficient manner. Some low-voltage motors are avail-
able, but it would restrict our choices. Many motors are available that require a 12-volt
drive. Fewer are available that will work with a 5-volt drive. The requirement to turn the
voltage off and on to a motor further complicates the supply question because most volt-
age switches (and wiring) will also drop the voltage available to the motor.

Several alternatives also exist to traditional motor technology. Esoteric motors may
be fun to investigate, but use them with care. The motor found at www.drives.co.uk/
news/prodnews/news_prodnews148.htm, for example, uses piezoelectric power to
create movement and uses low voltage.

Control Systems Most computers are designed to work from power supplies in the
3- to 5-volt range. We’ve discussed processor technology before, including power sup-
ply requirements, but one aspect of the computer technology we did not touch on is rel-
evant to battery-powered robots in particular. Control system circuitry made from
Complementary Metal Oxide Semiconductor (CMOS) technology has certain advan-
tages in this application. CMOS semiconductor technology, aside from being a
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low-power technology as discussed previously, also has two other nice characteristics
we could use:

� High noise margins Most semiconductor technologies, such as bipolar and
some FET technologies, have strict requirements for the voltage levels that can be
present on the circuit board. Processors and integrated circuits made from these
technologies have signals that only vary over a small percentage of the power sup-
ply voltage range. If the signals vary outside of these ranges, then logic errors
might occur and the robot will malfunction.
CMOS FET technology can tolerate a much wider range of signal voltages. With
some restrictions, CMOS logic gates regard signals above 50 percent of the power
supply voltage as logic one, and signals under 50 percent of the power supply volt-
age as logic zero. The power supply can even change voltage (within bounds) and
CMOS logic gates will still work just fine. It may be difficult to find off-the-shelf
computers built with just CMOS because the competing bipolar technologies have
the bulk of the commercial market, but certain manufacturers concentrate on
CMOS and other logic families cater to the requirements of portable and robot
applications. It should also be noted that some logic families work better than oth-
ers in the presence of nuclear radiation. If your robot will be going to truly hot
locations, give CMOS a good look!

Here are some PDF files that discuss high noise margin logic:
� www.ece.pdx.edu/~greenwd/AN_375.pdf
� http://lorien.die.upm.es/�macias/docencia/datasheets/info-familias/

hc-cmos-dc-characteristics.pdf

� Power supply range CMOS technology will work over a relatively wide range
of power supply voltages. Most single board computers (SBCs) work off 5 volts,
but it’s not impossible to find boards that will accept a wider voltage range. Auto-
motive designers have been using CMOS and related chip technologies for years,
even though they are not stuck for energy.
Here are some sites providing information about CMOS logic families:

� www.bychoice.com/cmos.htm
� http://us.st.com/stonline/prodpres/standard/stanlogi/hcmos.htm
� www.electronicstalk.com/news/sra/sra100.html

Power Regulation

Energy is not always available in a form that can be used successfully. Often, it has to
be transformed and tamed. This can be done in a few different ways and some are more
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suitable than others for battery-powered robots. It’s time to review power regulation and,
in the bargain, we can take note of regulation techniques that are good for robots.

The central problem to be solved in power regulation is to prepare an untamed energy
source to provide tame power for the robot. Certainly, the type of tame power needed
by the robot will vary. In some instances, the robot’s circuitry can use unregulated Direct
Current (DC) or Alternating Current (AC) to power components like motors or sole-
noids. But in most cases, the robot’s components will need well-regulated DC power.
This type of power is generally specified by the voltage, the acceptable voltage range,
the current available, and the level of ripple that can be tolerated. For some 5-volt DC
supplies, the specifications might read: “5V �- 0.25V, 5A, 25 mv pp ripple.” This is a
power supply that can deliver 5 amps into the robot at a voltage between 4.75 and 5.25
volts with only 25 millivolts of ripple noise. The ripple noise is often 60 Hz of noise (on
supplies driven by the AC power) or a higher frequency from a switching action that
will be discussed shortly.

Unstated specifications for a power regulator include the following:

� Efficiency Although our example power supply might deliver 25 watts into the
robot (5V � 5A), it might require a feeder wattage of 40 watts to do so. That
would make its efficiency 25/40 � 62.5 percent. The power regulator alone wastes
37.5 percent of the energy.

� Emissions Power supplies generate interference (electrical noise and radiation),
which propagates out all the power connections and through the air. Since com-
pliance with regulatory bodies is often required (as mentioned in Chapter 4), we
must pay attention to the power supply as part of this effort.

Types of Regulators Power supply regulators are available in many forms, including
the following:

� Linear regulators Linear regulators are an older technology that is well char-
acterized. One or more large transistors take the unregulated power at a higher
voltage (Vin) in one side and deliver regulated power at a lower voltage (Vout) out
the other side. By and large, since the current flows linearly through the power
supply, Efficiency � Vout/Vin.
Generally, the larger the difference between Vout and Vin, the better the power
supply, keeping noise spikes on Vin from getting to Vout. Unfortunately, this low-
ers the efficiency. Also, more cooling may be necessary; the power supply tran-
sistors may need larger heatsinks. Linear regulators are relatively simple and can
be reduced to a single three-terminal component with connections for Vin, Vout,
and Ground. They do not generate significant electrical interference, but they are
not very efficient as a rule.
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The following PDF files contain basic information about both linear and switch-
ing power supplies:

� www.web-ee.com/primers/files/f4.pdf
� www.web-ee.com/primers/files/AN-556.pdf

An offshoot of linear regulators is the Low Drop Out (LDO) regulator. LDOs are
linear regulators that expect a very low difference between Vin and Vout. They are
used primarily for the local regulation of voltage or in situations where Vin is very
low and Vout must be as high as possible. Since the efficiency is high (Vout/Vin),
LDOs generally do not need large heatsinks.
LDOs can be used for distributed regulation. Instead of having a single power sup-
ply in the robot, Vin is distributed throughout the robot and sent to several LDOs,
which provide regulated Vout power to different parts of the robot.

� Switching regulators Switching regulators are generally more efficient than
linear regulators. In addition, they can perform feats like making Vout higher than
Vin, but this does not mean the efficiency is higher than 100 percent. Because cur-
rent does not flow linearly through a switcher, the efficiency cannot be easily
computed.
Switchers basically take Vin and convert it to a high-frequency AC voltage wave-
form. This high-frequency current is transformed in various ways to a raw DC
voltage that can be higher or lower than Vin. Then the AC components are re-
moved to form Vout, an action made easier because these AC components are high
frequency and are easily filtered out. The following PDF files have further expla-
nations of this process:

� www.web-ee.com/primers/files/webex9.pdf 
� www.web-ee.com/primers/files/f5.pdf 

Switchers can run at a very high efficiency (above 90 percent) when used care-
fully. In practice, don’t count on achieving the claims made by the manufacturer.
Count on 75 percent and be surprised if the real number comes out higher. But in
a robot, this type of power supply can conserve energy. The downside is that
switchers will generate significant amounts of electrical interference of all types.

PROCESSOR

All further considerations of hardware energy savings must start with the processor. The
processor has several energy-saving features, which we have discussed before, and they
are outlined in the following sections.
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Power Supply Voltage

Most low-power processor chips designed for energy-efficient systems can function
with very low voltages. We’ll see why this is important when we discuss CMOS logic.
Suffice it to say that energy consumption is proportional to V2. This square law of
physics pays us great dividends as we move to lower and lower voltage systems. If we
can cut the voltage in half, the energy consumption goes down by a factor of 4!

Varying Voltage

Further, some processors can function while the power supply voltage varies. If the
processor has this feature, we can take advantage of it in the following way. Because
higher voltages can charge up capacitances in the logic chips faster, the computer can
run faster at higher voltages. If the computer has little to do, we can lower the voltage
and decrease the clock frequency, and the energy draw goes way down. As long as the
processor can get its work done in the allotted time, then the robot will function prop-
erly and all is well. In the mean time, a great deal of energy will be saved.

To take advantage of this feature, the power supply must be under software control.
It must initialize to a suitable voltage and then provide the proper controls that will
enable the computer software to alter the processor power supply voltage to acceptable
levels. It’s possible to get by with a single digital input that alters the power supply volt-
age. Just make sure that the slew rate of the power supply voltage (the first derivative)
is small enough and remains within the limits the processor can accept.

Varying Clock

Processors can be built out of CMOS. All logic families have a basic building block
called an inverter. The CMOS inverter is special in that it does not enable the current to
flow except when it changes state. Thus, if a CMOS inverter stays static as logic one or
logic zero, it will not use energy. However, when it changes state, the capacitance within
the inverter must be charged up (changing to a 1) or discharged (changing to a 0). When
this happens, a distinct amount of energy is used up in the capacitance of the inverter.
The energy in this capacitance is

where V is the power supply voltage and C is the capacitance of the CMOS logic
inverter gate.

Ecap �  0.5 �  C �  V2
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Since this amount of energy is dumped every time the CMOS inverter changes state,
the power exerted is proportional to

where f is the frequency of the processor clock.
Since the capacitance C is fixed by the CMOS process, it’s clear that our best hope

for power savings is to decrease V and f. Some modern processors are built to withstand
this. Changing their power supply voltage and changing their clock frequency will
decrease their power consumption.

Care must be taken, however, that the processor clock is not used for any fixed fre-
quency processes within the robot. Communication interfaces, for example, often
require a special fixed frequency for operations. Make sure these interfaces have their
own fixed clock frequency. The central clock of the system can first feed into these
communication interfaces and then it can be divided down for the processor. Some
processors have all this clock division circuitry internal to the processor.

The voltage and the clock can be ramped up and down to fit the workload of the
processor. Figure 7-3 shows the method of ramping voltage or the clock up and down,
and the relative effect on the processor performance. The same amount of work gets
done in the second graph, but since the voltage is half, the power dissipation for that

P �  Ecap �  f �  0.5 �  C �  V2 �  f
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work is a quarter of what it would have been. An interactive tutorial on CMOS can be
found at http://tech-www.informatik.uni-hamburg.de/applets/cmos/cmosdemo.html.

Processor Power States

As we’ve mentioned before, processors have distinct energy-saving states. Pick a pro-
cessor that has the types of energy-saving states that will match the operating require-
ments of the robot you are building.

Further, if the robot is to operate in a remote environment (with some remote con-
trol), consider giving the operators the ability to alter the processor power state from
afar. This is a feature that may just “save the bacon” of the project team someday. Those
reading translations of this text are now rather quite confused at this porcine idiom. As
an experiment, I have fed this paragraph to a computerized translator and translated it
from English to German and back. Before considering building a robot translator, read
the next paragraph. I’m sure it will give my editor fits. The two translations follow. Try
it yourself at http://babel.altavista.com/tr.

Here’s the automatic translation into German:

Weiter wenn der Roboter in einer Aussenstelle funktionieren soll (mit etwas
Fernbedienung), betrachten Sie, den Operatoren die Fähigkeit zu geben, um den
Prozessorenergie Zustand von fern zu ändern. Dieses ist eine Eigenschaft, die ger-
ade save der Speck kann. von der Projektmannschaft eines Tages. Die Leseüber-
setzungen dieses Textes sind jetzt an diesem schweineartigen Idiom eher ziemlich
konfus. Als Experiment habe ich diesen Punkt zu einem automatisierten Überset-
zer eingezogen und ihm von englischem zum Deutschen und zur Rückseite über-
setzt. Bevor Sie einen Roboterübersetzer errichtend betrachten, lesen Sie den
folgenden Punkt. Sicheres I.m gibt er meinem Herausgeber Sitze. Die Überset-
zung folgt. Versuchen Sie sie sich an http://babel.altavista.com/tr.

Here’s the automatic translation back to English again:

Far one if the robot in a branch office to function is (with something remote main-
tenance), regards you, to give to the operators the ability in order to change the
processor energy condition from a distance. This is save a characteristic, the
straight the bacon can from the project crew of a daily. The read translations of this
text are now considerable at this pig-like Idiom rather konfus. As experiment I
drew in this point to an automated translator and him from English to the German
and to the back translated. Before you regard a robot translator establishing, read
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the following point. Safe I’m it gives to my publisher of seats. The translation fol-
lows. Try it on http://babel.altavista.com/tr.

Oh well.

Processor Power Draw

Some processors are simply designed for low power operation, and others are not. Don’t
even bother considering processors that do not have the types of features necessary for
low power operation. Restrict the search for a processor to suitable energy-saving
processors.

Memory Types

When selecting memory technology, pay attention to the power draw of the memory
chips themselves. In particular, some flash memory chips have a built-in energy-saving
feature. They will move to a low power state if they are not accessed within a certain
time period. This can significantly decrease power consumption with little effect on the
operating speed of the processor.

SUBSYSTEM POWER CONTROL

The robot’s subsystems should be designed with integral power control switches. The
processor, under software control, should be able to turn off the power to unused por-
tions of the robot. If, for instance, the robot will be still for a while, we may be able to
turn off all power to the actuators and motors. If the robot does not have to sense any-
thing for a while, we can turn off the sensors. A variant of this sort of power control
switch is a “dead man” power controller that will turn off subsystem power unless the
processor commands otherwise. This is useful in situations where the processor may
bomb or if the application software simply forgets to do the proper housekeeping.
Remote, unattended robots need this sort of hardware feature on subsystem power con-
trol to avoid accidentally draining the batteries.

DRAIN ON INTERROGATION

Try to use sensors that do not consume power unless they are being interrogated. For
simple digital inputs, consider using tri-stated processor inputs. Often, it’s possible to
avoid any energy drain except during the brief period where the processor is interro-
gating the input.
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PATH CHECKING

During the design of the robot, be sure to check every single path that current might
take to ground. Often, sneak paths can unexpectedly develop that can drain a battery.
Don’t assume that all wires, connections, and components are one-way conductors of
current. Often, current will flow backwards through a component to provide an unfore-
seen path. This can drain a battery completely. Robots designed for remote locations
(like Mars) are routinely examined for these sorts of sneak paths. For critical missions,
determine what happens if a component fails completely. Will it fail as a short? Will it
fail open? What is the backup plan for preventing energy losses in such an occurrence?

SENSOR THROTTLING

Since the computer cannot pay constant attention to the sensors anyway, consider turn-
ing them off when not in use. Be careful though; choose sensors that have no warm-up
time. Often, sensors will drift for a while after they are turned on. If the sensors have
integral, internal references and remain accurate with power cycling, they may work
well. If the computer must recalibrate the sensors every time they are turned on, it may
not be worth it.

PERIPHERAL POWER CONTROL

Many peripherals are available with internal power control circuitry. Sometimes the
power controls work automatically within the peripheral, and sometimes the program
controls them directly. Such peripherals are as follows:

� Hard drives Hard drives can be turned off so they spin down. Most computers
offer this option now. Once the disk spins down, it will take a few seconds of latency
time for any new data; the disk must spin up to speed before data will be available.

� Displays Most computers now have control over the display’s consumption of
power. On laptops, the backlighting is controlled and desktops control the moni-
tor itself. These components use up quite a bit of energy. If the robot has a require-
ment for a display, make sure the relevant controls allow control of the energy
consumption.

� Communication interfaces Communication interfaces carry data into and out
of the robot. For robots that are short on available energy, the communication
interfaces must be thought through very carefully. One of the most difficult prob-
lems to work through is monitoring the communication inputs. It takes energy to
monitor a communication input continuously. The next section covers a few devel-
opments that may help with this problem.
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Spy-hopping
Some whales have an unusual practice of rising out of the water to see what is going on
above the water line (see Figure 7-4). It gives them some visibility they might not have
while underwater. Interfaces also spy-hop to detect network activity. The interface only
looks at the network periodically so energy use is minimized when no activity exists.

� Spy-hopping networks Peripheral network interface chips are available that can
monitor the network periodically to see if there are messages. Other interface
chips are capable of waking the system up from a power-saving slumber when a
message destined only for the robot appears. The rest of the time, the interface cir-
cuitry is turned off to save energy.

� Spy-hopping energy detection It takes more circuitry to detect specific data
patterns than it takes simply to detect data activity. Some communication inter-
faces will sleep until they detect a sufficient amount of energy at the communi-
cation input. This works best in a communication link where there is little traffic
that is not meant for the receiver (like a narrowband radio frequency [RF] link).
This type of wakeup does not work well in networks where all interfaces share the
same physical link, differentiated only by addressing.

� Spy-hopping time coordination If both ends of a communication link agree in
advance to limit communication to distinct time windows, neither side of the link
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need bother watching its receiver until the appointed time. Such a communication
protocol can save quite a bit of energy. Certainly, both ends of the link must have
accurate, free-running clocks to remain coordinated. An alternative is to use a
commonly available clock such as one transmitted by GPS satellites that is avail-
able all over the world.

SOME NOTES ABOUT SPY-HOPPING

Spy-hopping is basically a way for the robot to periodically sample the world in which
it must function. As we will see in Chapter 8, sampling can easily get the robot in trou-
ble. Two conditions make it possible to use this technique. First, conditions must be well
known for sampling to be effective. Second, the control system must be able to func-
tion properly with the limited amount of information that proper sampling techniques
afford.

We should note at this point that spy-hopping is inherently a type of polling. The
robot’s control system takes on the responsibility of watching events and catching them
as they happen. The processor software goes to each interface periodically and “polls”
it to determine if it needs attention. This control method is distinctly different from
interrupt-driven control systems where it is up to the event itself to notify the con-
trol system that action is needed. Interrupt systems also are capable of low-power
operation.

Since spy-hopping relies on sampling, an inherent response time delay is built into
the control system. If an event of interest occurs, it will be some time before the proces-
sor wakes up and polls the sensors monitoring the event. As long as the event lasts long
enough to be detected, the processor will catch it and act properly. A delay will take
place, however, which might be as long as the spy-hopping interval. As long as the con-
trol system can perform its tasks effectively in the face of the delays, no problems occur.

ADAPTIVE SPY-HOP DUTY CYCLE

The robot’s control software can adapt to a changing environment. If the control soft-
ware notes that relevant events are occurring ever more frequently, it can decrease the
spy-hopping intervals. Sampling the environment more often will help guarantee
smooth operation, but at the expense of increased energy consumption. When the
robot’s control software senses that external activity is slowing down, it can increase the
spy-hopping intervals again to save power. This technique can be used in situations
where the environment changes in a relatively predictable way. If the adaptive control
software alters the spy-hopping interval fast enough to keep track of the changing en-
vironment, then all will be fine. If the environment changes faster than the control
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system can adapt, problems will arise. The spy-hopping interval may remain too large
to effectively sample the sped-up environment. If limits exist on the rate of change in
the environmental processes, then the adaptive control system can be designed to keep
up. But if no definitive boundaries exist for these processes, be wary of adaptive con-
trol loops within the robot. It might be better just to waste the extra energy and let the
control system run at the fast rate, rather than risk a control system problem.

Software Considerations for
Energy Control
As discussed before, only hardware can conserve energy since it’s the only consumer.
Most of the hardware features capable of conserving energy will probably be under the
direct control of the software. Many techniques for using software to save energy bear
mentioning.

OPERATING SYSTEM

We’ve already discussed some of the operating system (OS) hooks that can be used to
conserve power. By and large, the very presence of an OS is antithetical to the proper
functioning of a parsimonious energy conservation system. We won’t discuss this much
further since each OS will have its own documentation for such matters, but be careful
that the OS properly supports the energy conservation states of the processor that is run-
ning the OS. If the OS has not been properly ported to the processor, or if the OS does
not support energy conservation, then consider another one.

One of the key features of an OS that we’ve mentioned is the handling of the soft-
ware environment. The OS must be capable of storing and retrieving software environ-
ments so it can survive power failures. During the initial system engineering of the
robot, we must decide what the implications of power failures are. If the robot must be
able to survive a brief interruption of power, then special hardware and software con-
siderations must be made. We’ll discuss these in the section on power failures.

ALGORITHMS

We can tailor algorithms to conserve power. The central idea is that each individual
operation in a control algorithm, each and every executed instruction step, consumes
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power. We can alter the algorithm so fewer steps are required and thus save power.
Certainly, algorithms can be structured many different ways, but to save power, keep
them short and sweet.

SCHEDULING

To coin a phrase, one should better buy the pizza instead of just eating it by the slice.
Certainly, buying the whole pizza at once will be cheaper, and the same is true in the
software domain. It becomes easy to chop a control problem into tiny pieces without
realizing it. Often, this happens during the design process as various aspects of the
power control problem are considered one at a time. Once a problem is chopped into
pieces, we wind up paying for it in lost compute time, lost energy, and lower reliability.
Problems become fragments in more than one dimension. Here are a few ways to
decrease wasted overhead in the robot:

� Computer overhead A computer control program that executes intermittently
is wasteful. The robot’s computer must be awakened or used more often, and the
attendant overhead becomes excessive. If we can find a way to pull the program
back together so it can be handled in one fell swoop, we can reclaim the lost
energy and time. Consider auditing all the tasks the robot performs and identify-
ing those that are being handled in a fragmented way. Several such tasks creep
unnoticed into a design during the design phase. Rewriting those tasks will often
bring power savings and make the software more reliable.

� Power overhead Most robots have dozens of tasks to perform. Some of the
energy to perform these tasks will be wasted in overhead. Consider, for the
moment, a car. Starting a car, at the very least, causes energy to be expended from
the battery. If we have two errands to run, we could group them together so we
only have to start the car once. The same grouping technique can work in energy
management in a robot. Some of the hardware circuitry will need to be charged
up to perform tasks. We can save energy by grouping tasks together in time so less
energy overhead is wasted.

� Pipelining (real time) Consider modifying the robot’s control software to
pipeline tasks. To illustrate why this is useful, we need to revisit pipelining as it
applies to processors.

In processors with pipelines, instructions are not executed immediately, but they are
put into a pipeline. Pipelines can be used in different ways to control energy consump-
tion or execution speed. A trade-off takes place between speed and power since more
compute power requires more energy.
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Pipelines for Speed

In Chapter 3 on computer hardware, we discussed using pipelines to speed up process-
ing. The specific example used was “If A, then B, else C.” In a pipeline optimized for
speed, A, B, and C are put into the pipeline simultaneously and are computed simulta-
neously. Either B or C comes out of the pipeline (already precomputed) based on the
value of A. This is the way a pipeline optimized for speed would behave. It burns energy
as fast as possible.

Pipelines for Power

As the processor goes about executing the instructions inside the pipeline, it sometimes
notices that some of the instructions don’t have to be executed. Power can be saved if
unneeded instructions are not executed. Let’s revisit our example program, “If A, then
B, else C.” In a pipeline optimized for power, A is put in the pipeline and computed
first. Based on the value of A, either B or C is put into the pipeline for computation.
This method is clearly slower but saves the energy that might be used in unneeded
computations.

We just looked at how a pipeline in a processor can be optimized for energy conser-
vation. The processor has a pipeline that handles instructions that are executed in a serial
manner. In the same manner, we can construct a pipeline of tasks that the robot executes
in a serial manner. If we buffer up these tasks instead of executing them immediately,
we may discover tasks that do not have to be executed. In a real operation, various com-
mands may arise that just don’t make sense. One set of commands might look like this:
“Go to from Point B to Point C and pick up the Rock C. Bring it back to Point B and
examine Fact A. If A is true, drop Rock C and pick up Rock B.”

A properly constructed robot task pipeline would look at this series of commands and
alter it to the following: “Examine Fact A. If A is true, pick up Rock B, or else go to
Point C and pick up Rock C.”

A very well constructed robot task pipeline would question whether the robot should
do any of this work. If neither the information about fact A nor the rocks are needed in
subsequent tasks, all this work can be avoided. If a subsequent robot task requires Rock
B or Rock C, then the pipelined tasks can be executed. Further, the robot task pipeline
can determine if the robot really needs to return to Point B at all.

Most people, while cleaning house, will find lots of reasons to go upstairs and down-
stairs to achieve specific goals. If no emergencies occur, it makes sense to pipeline all
the tasks for a while. Go upstairs for the upstairs tasks and downstairs for the down-
stairs tasks. It’s easy to tell that this saves energy. If the robot can afford to hesitate for
a while, it can pipeline its tasks and probably save some energy.
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Pipelining (Premission)

Just as the robot’s computer can pipeline tasks, so too the robot designers can pipeline
tasks well in advance. It’s just a matter of how soon the logical order of execution can
be determined. In the case of real-time pipelining, the robot’s computer pipeline is strip-
ping out tasks that have been cobbled together at the last moment. The real-time pipeline
optimizes tasks that don’t make sense because they could not be predicted beforehand.
But with clever programming, the robot’s designers can also optimize ahead of time the
ways in which tasks are executed. It’s almost like performing pipelining well before the
tasks are to take place, and then feeding the robot’s real-time pipeline a stream of tasks
that don’t need any further optimization.

Consider a trivial example. Suppose the robot has “shoes” that are required for move-
ment. It does not take a genius to realize that putting on shoes should be done before
standing up. Those of us with kids, however, know the kid’s already up, in the car, and
down to the mall before we discover the surplus of pink wiggly toes. Given that humans
are leaps and bounds ahead of robots in their abilities and evolution, we leave it to the
reader to discover the advantage this sort of behavior conveys to the human species.
Why is the world put together like this? Once we, as humans, become smart enough to
discover the reason, we will surely build superior robots.

But I digress. The robot designers should be able to plan missions where the robot is
controlled well enough to put its shoes on before moving. In fact, with the proper devel-
opment software, the premission planners should have the tools that will make proper
robot control largely an automatic occurrence.

Taking one step back, robot designers should also be able to optimize all the software
instructions to conserve power. We’ve already seen the example of the IF instruction
optimized for speed or power. Most compilers are capable of optimizing the software
for various things. With certain flags set at compile time, a compiler can turn out fast
code or condensed code that uses little memory. A good compiler will also eliminate
code that will never be executed.

SAFEGUARDS

The robot’s control software should have control loops that will sense the inordinate
consumption of power and other serious situations. This is especially vital in space mis-
sions or when the robot cannot be repaired. Two types of events should be watched care-
fully with separate software watchdogs:

� Security breaches Communication coming into the robot should be scanned for
evidence of hackers and other more random interference. If it’s determined that
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the system is under attack, it should move to a safe configuration and shift its con-
trol strategies. The robot should report the intrusion once it’s detected, and then
secure the robot’s energy supply against unwarranted use. Energy can be con-
served while proper communications are restored.

� Power thrashing Given that the energy supply is of critical importance in many
mobile robots, it makes sense to observe the power drain carefully. If the energy
is being drained away too quickly, it makes sense to shut down activities until the
cause can be determined. The robot may be thrashing about, malfunctioning, or
just executing a badly designed algorithm. It’s a smart robot that will give itself a
timeout.

POWER FAILURES

One technique that is all but lost in today’s complex world of computer software is the
use of power failure detection. It is possible to build a power supply with an output sig-
nal called Power Failure Detect (PFD) that will warn of the impending cessation of
input power. During a power failure, the PFD signal can go low a few milliseconds in
advance of the time when the regulated power will fail to meet specifications. The
processor will be interrupted and can do all the housekeeping necessary to survive the
event. If the robot is designed from the start to take advantage of this, then it is possi-
ble for the robot to pick up right where it left off. To plan on using this capability, we
must solve all the following problems:

� The power supply must generate the PFD signal reliably. Most power supplies do
not have this feature.

� The OS software must facilitate the implementation and use of the PFD signal.
The truth is, most OS software will simply get in the way of successfully imple-
menting PFD software. Most large OS software products have so many holes and
gaps that success is problematic.

� The robot’s computer must have sufficient nonvolatile memory to put away all the
volatile data that will be lost during the power failure. Flash memory, battery-
backed Random Access Memory (RAM), and disks are all good places to put the
data. Once a PFD is signaled, however, we must be very careful to finish all oper-
ations before the power fails completely.

� All the robot’s states must be put away to accomplish a complete PFD recovery.
These states include both the digital states that we have been talking about and
mechanical states. The robot, after all, may be moving when the power fails. It is
likely that the movement will be disturbed by a power failure unless the power fail-
ure is very short. Consider the case where the robot is moving its arm to the right.
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If a very brief power failure occurs, proper PFD software will preserve that infor-
mation and finish the movement when the power returns a few milliseconds later.
Certainly, if the power failure lasts longer, the motion will be ruined anyway. In
addition, if safety requires it, all motions must come to a fail-safe stop when the
power goes down. In all these instances, a complete PFD recovery of mechanical
states is impossible.

Mechanical Considerations: Software
for Energy Control
We’ll be discussing some mechanical engineering in Chapter 11. Many aspects of the
mechanical design of the robot hinge on the energy consumption. Certainly, if the robot
moves, then energy is expended to create that motion. The control system can monitor
the expenditure of mechanical energy and optimize things. This can happen in several
ways, which are listed here in no particular order of importance.

SHARING MOTORS

Motors tend to be among the heaviest of components. If the robot does not have to move
in multiple dimensions at once, consider putting in lightweight clutches and share the
motor between these mechanisms. The robot’s software may have to determine which
direction to move first.

POSITION PREDICTION

When the control software decides to move the robot, it expects it to wind up in the
proper position at the end of the move. But the truth is, the robot rarely winds up in the
exact right spot after an initial move. Another smaller movement is often necessary. To
the extent that these smaller corrective moves can be minimized, the robot can save
energy. Remember, it often takes extra energy just to get a robot moving at all. If the
robot’s control system is smart enough to adapt, it can predict the effect of a movement
even before it takes place. Further, as conditions change around the robot, the predic-
tion mechanism can be altered to fit the conditions. With the right algorithm, the robot’s
control software will continue to be efficient in its movements, coming close to the pre-
dicted position on the first try.
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Consider a real example. Suppose the robot must put fence poles in the ground. The
control software has been turning on the forward motor for three seconds each time the
robot must move to the next pole. However, as the robot begins to enter sandy soil, trac-
tion becomes a problem and it takes extra motor time to reach the next position. The
control software should be able to sense this from the last fence post, and turn the motor
on longer when moving to the next post. As the traction gets better, the duration can be
decreased.

MINIMUM ENERGY ROUTES

The control system software, given a command to move the robot in multiple dimen-
sions, should be able to minimize the amount of energy required to make the motions.
This can take place in multiple ways. In some cases, the robot can effectively make the
required motion in any number of different ways. Suppose, for example, that the robot
must move its hand to a new location to perform a task. The robot could retract its hand,
move itself to a comfortable spot in front of the object to be manipulated, and extend
its hand to grasp the object. This set of motions might well be wasteful. Moving the
hand to the required position may only take a rotation at the waist or an extension of the
arm. The same task can be carried out in this manner at a great savings in energy.

The control software can decide which movement will minimize energy consump-
tion in a few different ways. The software can contain a simple static model of the cost
for moving in each dimension, or it can adaptively change the movement costs by
observing the costs of previous movements. Certainly, these algorithms can become
complex. If one portion of the robot breaks, rendering motion in one dimension impos-
sible, simply raise the cost of motion in that dimension to a very high value. The energy
minimization software should then bypass any movement in the dimension containing
the broken components.

BRAKING

Anyone who has driven down a very long, steep hill knows that braking takes energy.
The brake pedal is held down, requiring energy from the leg muscles. Common driving
lore holds that the brakes should be let up now and then to avoid overheating. This is
something I still do to this day, not knowing if it’s needed. In any event, the design of
the braking system should be carefully done instead of waiting until the last second.

First of all, just what are brakes? We’ll discuss the types of brakes shortly. Defined
in a general manner, brakes are a mechanism for slowing down the robot in one or more
dimensions. Following the theory that every component must be justified, we should
ask the following question. Why might braking be required at all?
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Safety

If the robot gets in a difficult situation, it may have to stop quickly. This can occur if an
obstacle appears, a malfunction occurs, or operators press the panic button. Note that in
the case of a panic, brakes might actually hurt instead of helping. Consider the case where
someone has become accidentally caught in moving mechanisms. Once motion is halted
because of a panic, the brakes should be released as long as no more motion ensues. With
the brakes released, the mechanisms may be moved to extricate a trapped operator. In
designing the robot, don’t forget that the brakes can be as dangerous as the motors.

The control system software to deal with braking is a lot more sophisticated than it
might seem at first glance. Consider for the moment antilock braking systems (ABS) in
cars. When the computer that runs ABS senses a skid, it pumps the brakes to help keep
the car skidding in a straight line and to maximize brake’s gripping action. Here’s an
article on ABS using fuzzy logic, if a fuzzy braking system appeals to you:
www.intel.com/design/mcs96/designex/2351.htm. Some more good articles on ABS
can be found at www.howstuffworks.com/anti-lock-brake.htm and www-s.ti.com/sc/
psheets/slit114a/slit114a.pdf. Some engineers spend their entire careers in this field.

Power Failure

If power fails, the robot may go out of control. What happens next depends on the brake
design. Cars have two kinds: temporary brakes (the operator can press the brake pedal)
or flip-flop brakes (the operator can pull the emergency brake and release it later). A
third option would be automatic braking on power failure, where the brakes are kept off
until the power fails. The astute robot designer must choose between these options.
Control system software will only be of use until the power completely fails. If the
robot’s power supply has PFD built in, some warning will be given in advance. Although
the primary braking system can become complex, keep the emergency braking systems
dirt simple.

Speed

The fastest way to go from point A to point B is to accelerate at the maximum rate for
half the journey, and then decelerate at the maximum rate for the other half of the jour-
ney. Those well versed in calculus will recognize the several flaws in this last statement,
but it gives us the basic concept. If speed of operation is the goal (instead of energy con-
servation), then techniques such as this braking maneuver can be used to decrease travel
time. We leave it up to the reader to work out the math model involved to truly mini-
mize the overall trip time.
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What Types of Brakes Exist?

Remember the general definition. Brakes are a method of slowing down (or remaining
in place). This is a function that can be implemented in the following ways:

� No brakes Okay, we’ve all had bicycles like this. The truth is, aside from scrap-
ing shoes on the ground, it’s possible to slow down just by coasting to a stop. This
does not work real well going downhill, but it works just fine on level ground and
going uphill. Even if the robot has great disk brakes, the control software should
be smart enough to recognize when they don’t need to be used. This sort of brak-
ing action consumes very little energy, but it requires rather sophisticated software.
Here’s an example of the type of software action that could save energy. Suppose
the robot must move 4 feet. Suppose from experience the robot knows it will coast
2 feet once the robot is at top speed and the motor is turned off. It’s likely that the
least energy-expending method of moving is to get to top speed, move for 2 feet,
turn off the motor, and coast for 2 feet until the robot comes to a stop. Other power
expenditure plans may work better, but certainly little power will be wasted in the
last half of the journey. The motor and the brakes will both be off. One thing is for
sure though. The robot will not complete the move in the minimum amount of
time.

� Motor braking Just as a motor can be used to accelerate a robot, so too can it
be used to decelerate. Motors can be used as brakes in a couple of different ways.
Because moving coils of wire through magnetic fields cause a current to flow,
some motors become generators when the rotor is spun around. If the motor coils
are shorted out, then a larger current will flow and the motor will resist the spin-
ning motion on the rotor. By definition, this causes braking. More sophisticated
motor control circuits are available that can brake more effectively by driving the
motor coils in an optimum fashion. In fact, the motor can be partially driven in the
opposite direction. The motor then actively counters the robot’s existing motion.

� Pad brakes Regular friction brakes of all sorts are available too. We’ve already
discussed ABS brakes and the various forms of braking actions (manual and auto-
matic). It just makes sense to mention them again here. However, one thing hasn’t
been mentioned before. Brakes require cooling. In the worst case, they dissipate
the entire kinetic energy of the robot. Providing for the cooling of the brake pads
(if they exist) must be part of the design.

TORQUE CONTROL

Much like ABS brakes can prevent spinning wheels from locking up, it makes sense to
prevent wheels from spinning during acceleration when they should be gripping the
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traction surface. It does no good to spin the robot’s wheels when it is accelerating. That’s
just a waste of power, time, and rubber. (The tire makers in Detroit will be glad I can-
not conceive of moving on anything other than tires.) The following discussion assumes
the robot has more than one speed or can choose between more than one torque setting
on the wheels. To counteract spinning wheels, the robot must first be able to sense the
event. The robot’s control system can sense when the tires are spinning in several ways.

The simplest method is to determine the speed of the robot over the terrain and com-
pare it to a model of the wheels. If one wheel is spinning significantly faster than the
others, it is probably not gripping the same surface. The same sensors used in ABS
brakes would work in this case.

A slightly more difficult method is to sense the torque on each wheel directly. This
can be done with spring mechanisms or by monitoring the voltages on the motor wind-
ings. A motor meeting no resistance will not consume as much power to spin the wheels
at a known rate. If the wheel is spinning, the motor control circuitry should be able to
signal that.

RECLAIMING ENERGY

One of the features that comes almost for free with an electric car is the ability to gen-
erate electricity when going downhill or braking. (A fun web site that should come in
handy and that details much of the thinking that has gone into electric cars is at
www.howstuffworks.com/electric-car.htm.) If a robot takes 100 watt-hours of energy to
climb a hill, we might think we could reclaim most of those 100-watt hours by going
down the other side of the hill. But alas the laws of thermodynamics get in the way.
Surely, we would not want the thermodynamic police to be on our tail.

The second law states that the entropy of an isolated system can never decrease. This
limits the efficiency of energy conversion between different types of energy. It’s rarely
possible to approach 25 percent efficiency converting electrical energy to kinetic energy
and back to electrical energy again. Reclaiming energy is very difficult and should only
be attempted if the equipment is virtually free and does not interfere with other
processes. It rarely pays off in a device as complex as a robot. More info on thermody-
namics and energy conversion can be found at http://members.aol.com/engware/
systems.htm.

Revisiting technology is one of the pleasures of writing a book like this. During my
search for good supplementary web sites, I often run across some odd twists on things.
For some truly interesting reading, I offer the satirical web page of the Thermodynamic
Law Party (http://zapatopi.net/tlp.html). The thermocrats among you will already rec-
ognize the principals therein. For the rest of us, read this site with care. On the site, it
states that Kelvinian meditation causes epileptic seizures “only in lab mice at extreme
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doses.” At the very least, that should prod the curious. As in all things, some truth can
be found in everyone’s thinking.

ENERGY REUSE, REVISITED

Although it is difficult to reuse energy by converting it from one form to another, it is
easy to reuse energy in its existing form. We’ve already seen how we can use the exist-
ing kinetic energy of the robot to coast to a destination and save energy. We can extend
this concept further by keeping track of the kinetic energy in various parts of the robot.
Here’s an example.

Suppose a robot has a relatively human form. This being the case, we can run a quick
experiment using on our own bodies. Stand up one arm’s length away from a light switch
on the wall with your left shoulder closest to the wall. Now turn so that your right shoul-
der is closest to the switch with your left shoulder away from it. If you want to turn on
the light switch with your left hand, you have a couple of ways to accomplish this task.

You can rotate right (90 degrees) at the waist until facing the wall and only then raise
your left arm to touch the switch. These two motions are disjointed and consume rela-
tively known quantities of energy.

An alternative way to do this is to raise your arm to touch the switch when the rota-
tion is halfway completed (45 degrees). It may seem easier to do it this way because the
momentum of the arm is already headed in the direction of the switch when the rota-
tion is halfway completed. But if the rotation of the waist is completed before the arm
is raised, energy is wasted in raising the arm.

The bottom line is that robots can use coordination. Very few people ever bother to
define just what human coordination is. All we know is that some athletes seems to soar
above the others effortlessly and perform dazzling feats. But broken down to physics,
at least some aspects of coordination come down to energy conservation and the con-
servation of momentum. Just as the human brain must act to turn a awkward person into
a graceful athlete, so too a robot’s control system must run algorithms capable of
streamlining the motions of the robot.

The motion and energy computations that would streamline the motions of the robot
need not be done at the spur of the moment just before they are needed. It is possible to
compute many of the motions ahead of time and store the results for future use. The
designers of the robot can experiment in advance to find the proper combinations of
motions to achieve a desired effect. If the robot’s repertoire of motions is small, this may
work well. But if the robot must move in multiple dimensions at once to achieve com-
plex, spur of the moment tasks, then the control system may need to perform these cal-
culations quickly, in real time.
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Writing a software program to simulate coordination is a complex task. A good, first-
order approximation would be to write separate control algorithms for each component.
For example, we can write one control loop for the arm and one control loop for the
waist. While the control loop for the waist is rotating toward the wall, the control loop
for the arm will recognize the optimum time to start moving the arm.

It is possible to run into some trouble with many control algorithms running in par-
allel, but these difficulties can be overcome. Detecting and avoiding hazards, for
instance, can become a problem. Moving one component at a time is more predictable
because only one control loop is active at a time. If the waist and arm control loops are
both operating at the same time, they must be coordinated if obstacles must be avoided.
Coordination involves communication and falls prey to all the difficulties we discussed
previously in parallel processing. If we watch the pitfalls, we can reap the rewards in
energy savings.

Another example of coordination involves the rotation of mass. Ice skaters pull in
their arms when they go into fast spins. A robot that must rotate should pull in its arms
before the rotation. Not only does it help avoid punching the operator, but also less rota-
tional energy is needed.

A good article on designing a low-power system is at www.iapplianceweb.com/
story/OEG20020623S0006, and a review of some of the electrical engineering tech-
niques we’ve discussed can be found at http://academic.csuohio.edu/yuc/talks/
low-energy2k1021.pdf.

Another interesting article can be downloaded from wwwhome.cs.utwente.nl/
�havinga/thesis/ch2.pdf. The author clearly views the world in terms of energy. Table
3 in this article seems to indicate the average human expends daily the energy equiva-
lent of a kilogram of coal, or roughly the energy in 10 beers. Check the chart out; it
might explain some of the neighbors!

Bottom line, the conservation and control of the robot’s energy reserves requires great
care. Software algorithms, property written, can minimize the robot’s consumption of
energy.
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DIGITAL SIGNAL

PROCESSING (DSP) 

All humans practice digital signal processing (DSP) daily. This may come as a sur-
prise, but it’s true. Further, very few people know the simple theory that they actually
practice each day by instinct alone. In this chapter, we’ll discuss the theory and relate
it to real-life examples.

First, let’s quickly review how DSP functions. Most of the real world is analog, not
digital. The robot will need to look at signals of all sorts. These signals have to be acces-
sible to the control computer so the proper processing can occur.

Figure 8-1 shows one way this can be done. An analog-to-digital (A/D) converter
digitizes the analog input signals. The digital representations of the signals then go into
the computer where they are processed as needed for the application. The computer can
then output digital results, some of which can drive a digital-to-analog (D/A) converter,
which generates analog signals for output. Each element in this chain of electronics
serves to modify the information from the original signals in various ways. We’ll dis-
cuss the characteristics of each block in the figure later in the chapter, but for now, just
realize that the computer cannot see the analog signals at all times. It can only sample
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them periodically with the A/D, and it has no idea what the signals do between samples.
We’ll state the main theorem used in DSP and then demonstrate that we already know
the theorem and use it instinctively every day.

The Nyquist-Shannon
Sampling Theorem
We cannot capture the essence of a digitized signal without sampling it at a frequency
twice that of the signal. Stated another way, we must sample a signal twice as fast as the
highest-frequency component in the signal.

ANTI-ALIASING FILTER

To successfully sample a signal, we must first alter it to filter out all the frequency com-
ponents that are above half the sampling frequency. The frequency at 50 percent of the
sampling frequency is also called the Nyquist Frequency. We’ll get into a discussion
about just what aliasing means later. These statements are oversimplifications of the
original theorem. Consult the URLs near the end of this section for a more thorough
treatment.

So where do we use all this math theory in our daily lives? Here’s one for readers with
kids. Nobody pays constant attention to the kids. It’s impossible to do so because it takes
too much energy and, further, paying constant attention teaches them nothing. Instead,
we sample their behavior periodically by listening in on them. Often we turn our heads,
cup our ears to listen, and say, “Gee, it’s way too quiet up there.” Oddly enough, with
kids, the total lack of input is the very signal that something is wrong.

That was an easy example. Here’s a harder one. Consider the following experiment
—don’t do it for real. While you are a passenger, just imagine you are driving and pay-
ing attention to the road. Drive down the street past a long row of parked cars. At a con-
stant speed, pass one parked car each second. It’s not possible to watch every car every
second. The truth is, we sample the road ahead with our eyes.
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FIGURE 8-1 A block diagram of a typical DSP computer
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So here’s a question. How often must we sample the parked cars to feel comfortable
about driving by them at this speed? Remember, we are driving past one car per sec-
ond. Let’s assume we close our eyes and only open them briefly at a fixed sampling rate.
How often do we have to open them to feel comfortable?

Well, to confess, I tried this stupid experiment. It’s a little bit like a doctor injecting
himself with germs to test out his new vaccine. I did it safely though. Here’s my report.
Keeping my eyes closed was intensely uncomfortable, and I didn’t try it very long,
which was certainly to be expected. Opening my eyes once a second was uncomfort-
able. I could only see each car once as I passed it. Opening my eyes twice a second was
more comfortable in that I felt I could control the car properly.

In this experiment, I experienced the Sampling Theorem firsthand in a conscious
manner. To observe the cars properly, I had to sample the cars twice a second in a situ-
ation where the cars were going by once per second.

Critics of this experiment might say, “That’s great, but what if a fast-moving car came
darting out of a side street? Wouldn’t that cause an accident?” The answer is yes.
Sampling might not work properly if an unexpected car appeared on the street. If we
got lucky, we would notice the fast car when our eyes were open and we might be able
to avoid it. We would probably not be able to tell how fast it was going though. Worst
case, we would never even see the fast car; it would both appear and hit us while our
eyes remained closed.

The key here is an antialias filter, which, in our example, would be a speed limit sign.
Town planners automatically protect the quiet side streets (those with rows of parked
cars) by surrounding the neighborhood with speed limit signs. The fast-moving vehi-
cles are therefore filtered out of the situation. If fast-moving cars were the norm in the
neighborhood, we would be on guard and sample the road ahead much more frequently.
We react instinctively as we apply the Sampling Theorem in this way.

Let’s summarize the driving experiment in DSP terms. Cars are driven at all differ-
ent speeds; these are our input signals. To protect our sampling system, we put in an
antialiasing filter (speed limit signs) so we do not have to deal with cars moving faster
than one car length a second. Driving past parked cars at one car per second, we sam-
ple the cars visually two times a second. Per the Sampling Theorem, this gives us
enough information to process the data and to drive carefully.

Let’s try another experiment. We will use pure sine waves as input signals to the DSP
system and will sample at a fixed rate every 0.3 seconds. This works out to a sampling
rate of 3.33 Hz or roughly 20 radians per second. We will vary the frequency of the ana-
log input signals from 3 to 15 radians per second. With a fixed sampling rate of 20 radi-
ans per second, the Sampling Theorem predicts we will do a good job of sampling sine
wave input signals with frequencies as high as 10 radians per second. By looking at sine
waves from 3 to 15 radians per second, we should see a breakdown in the sampling
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systems above 10 radians per second. We have, after all, eliminated the antialias filter
from the DSP system to illustrate the problems that could occur in its absence. We
should expect problems.

Take a look at the evidence in the following figures. Each chart pair shows the input
sine wave on top and the sampled result on the bottom. These charts were made in a
spreadsheet, which attempted to fit a curve to the sampled data at the bottom. The wave-
form thus reconstructed from the sample data is shown on the bottom of each chart.
It represents what the DSP computer thinks the original waveform looked like (see
Figure 8-2).

The sampling went reasonably well from 3 to 9 radians. Looking at Figure 8-2, it’s
clear the software could not discern the frequency (or the shape) of the input sine waves
with frequencies above 10 radians per second, but something else emerges. The sam-
pled waveform looks increasingly like a lower-frequency signal. Take a look at what
happens in Figure 8-3 as we extend the charts well beyond a 15 radian per second input
signal. The sampled waveforms seem to decrease in frequency from 16 through 21 radi-
ans per second, and then increase in frequency again between 21 and 26 radians per sec-
ond. The sampling system thinks the real waveform is doing something that is is not
doing. This is classical aliasing right before our eyes. The sampling system is being
fooled.

An alias, as defined in Webster’s dictionary, is an “assumed name.” The sampled,
reconstructed waveform at 16 radians per second looks like a waveform only two-
sevenths the same frequency. It’s representing itself as something it is not, hence the
name alias.

We’ve all seen this exact same effect take place with car wheels. At night, under
incandescent lights, look at the hubcaps of a moving car as it slows down to a stop. Pick
a car with many spokes in the hubcap. Because electrical power is at 60 Hz (or 50 Hz
elsewhere), electric lights flash at that frequency. The lights are effectively sampling the
hubcap spokes for our eyes. We can only see the hubcaps when the lights are at their
brightest. As the car decelerates from high speeds, the hubcaps appear to slow down to
zero before the car has even stopped. Then, as the car continues to decelerate, the hub-
caps appear to start moving backwards. This is the exact same effect that we just saw in
our charts about aliasing.

To avoid having the DSP computer fooled in the same manner, pay strict attention to
the Sampling Theorem. Have the computer sample at twice the highest frequency in the
input signals. Further, put an antialiasing filter in the input of the D/A that will filter
out all frequencies above half the sampling frequency.
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FIGURE 8-2 Sampling Theorem example: When sampling at 20 radians per
second, things break down for signals faster than 10.
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FIGURE 8-3 Aliasing example: When sampling at 20 radians per second,
aliasing is evident past 10 and dramatic by 20.
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Here are some further descriptions of the Sampling Theorem:

� ht tp: / /ccrma-www.stanford.edu/� jos / r320/Shannon_s_Sampling_
Theorem.html

� http://ptolemy.eecs.berkeley.edu/eecs20/week13/nyquistShannon.html
� www.hsdal.ufl.edu/Projects/IntroDSP/Notes/Sampling%20Theorem

%20Brief.doc

If you want to have some fun with language, take a look at the www.nightgarden
.com/shannon.htm web site.

With such great theorists like Nyquist and Shannon being brought up, I feel odd
about injecting some practical details into this discussion (see Figure 8-4). Unfortu-
nately, it has to be done. The world is a tough place, Grasshopper, and one cannot go
about spouting generalities without getting in trouble. So hold your nose; here comes
some castor oil!

DSP is all about transforming data so it can be processed and used to good effect.
The trouble is, most of the transformations distort the data along the way. Before we
even get started with DSP, we find that the antialias filters and the A/D both alter the
data in ways that must be carefully taken into account. Further, once the DSP proces-
sor and the D/A come into play, we will see that they too distort the data.

It’s all very easy to slap an A/D and a D/A onto a computer and call it a DSP system.
The difficulty comes in making it see the world correctly and helping it make the right
decisions. So here are some of the salient details that should be taken into account.
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A/D Conversion
We’re not going to discuss the types of A/D converters that are available, nor are we
going to discuss how they work. We leave it up to the reader to delve into these details,
including cost and linearity. Just remember that it must be fast enough to keep up with
the sample rate chosen according to the Sampling Theorem. Here are a few good URLs
that talk about A/D conversion in general:

� http://hyperphysics.phy-astr.gsu.edu/hbase/electronic/adc.html
� http://jever.phys.ualberta.ca/�gingrich/phys395/notes/node151.html
� www.sxlist.com/techref/io/atod.htm

We do need to have a discussion about the number of bits in the A/D. First of all, we
must recognize that an A/D converter’s primary characteristic tends to be the number
of bits in the digital output. Be wary of A/Ds that have many bits. It’s not unusual for
an A/D to fail to perform up to its reported level. So even if an A/D touts 16 bits of res-
olution, it may only deliver the equivalent performance of 12 or 14 bits. It seems obvi-
ous that a real-world signal cannot be well represented by just 2 or 3 bits of data. But
how many bits do we really need?

First, we need to define db or decibel. This acronym has many uses, which each have
their own definition. Here we will take it to mean a method of measuring voltage ratios.
A voltage signal that is 6 db lower than another is just 50 percent of the other. Increasing
a voltage signal by 6 db doubles it. In a similar manner, 20 db connotes a factor of 10.
A good web site on decibels is at www.its.bldrdoc.gov/fs-1037/dir-010/_1468.htm.

The primary consideration when looking at A/D bit length is the nature of the input
signals. What signal-to-noise (S/N) ratio do the signals have? All signals have noise on
top of them. Some signals have far more than others. If a signal is roughly 10 times big-
ger than the noise, then it is 20 db S/N. Figure 8-5 shows a visual representation of noise
at different S/N ratios.

It’s important to know the S/N ratio of the signals being measured. The rule of thumb
is that each extra bit in the A/D provides another 5 db of S/N capability in the DSP
engine. Ordinarily, another bit would double the effective range of a word and thus pro-
vide 6 db of S/N capability, but I’ve been told by experts not to expect the theoretical
limit, so count on 5 db per bit.

Now if the signal to be measured has a 40 db S/N ratio, then an 8-bit A/D might be
just the ticket since 8 � 5 � 40. As long as stepping up to a couple of more bits is not
too expensive, I’d consider a 10-bit A/D for such a job. Buying a 16-bit A/D will not
convey any extra accuracy with such a low S/N signal. Ordinarily, a 16-bit A/D might
allow 80 db of S/N processing (5 � 16), but if the input signals are not up to that num-
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ber, there’s no sense trying for more. In general, use an A/D that’s just somewhat better
than the signals it must measure.

So here’s our first pop quiz! If the signals have an S/N ratio of 60 db, how many bits
of resolution should the A/D have?
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FIGURE 8-5 A visual look at S/N ratios
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It should have at least 12 bits. The calculation is 60 db/5 db/bit � 12 bits. More infor-
mation on the S/N ratio can be found at http://searchnetworking.techtarget.com/
sDefinition/0,,sid7_gci213018,00.html.

A/D Dithering
A/D converters are not perfect. They convert analog signals into digital representations
of the original signal. If the original signal is a very smoothly changing signal, then the
digitization of the signal can add significant noise to the signal. This comes into play
in at least two situations:

� Sometimes the A/D itself will have difficulty stepping over major bit boundaries.
Suppose, for example, we’re using a 16-bit A/D and that the signal steps over the
boundary from 7FFFH to 8000H. The number 7FFFH is in hexadecimal (base 16)
notation explained at the following URLs:
� www.whatis.techtarget.com/def inition/0,,sid9_gci212247,00.html
� www.hostingworks.com/support/dict.phtml?foldoc=hexadecimal.
Many bits are changing at the same time, and the A/D may have trouble keeping
the same accuracy it might have with simply stepping from 7FFEH to 7FFFH.

� Quantization error also creeps in. No matter what, the A/D can only represent the
input signal to the accuracy given by the number of bits in the A/D. In a smoothly
changing input signal, these effects can become noticeable. This effect is most
often seen in graphic images; the human eye is very efficient at picking out error
patterns in smoothly changing pictures.

To counteract these effects, a random signal is added to the input signal. This dither-
ing of the input signal is generally sufficient to blur the deleterious effects mentioned
earlier. Dithering can be added in many ways:

� Analog noise We can simply put a noise source at the input of the A/D. The mag-
nitude of the noise source should be just about the size of the quantization noise.
If the range of the A/D is 10 volts, and it’s a 10-bit A/D, then a single bit change
in the A/D digital output covers 10V/210 � 10 mv. Adding a 10 mv noise source
to the analog input stage would create the type of dithering needed. Using a noise
source larger than 10 mv would also work, at the expense of lower resolution.

� Random shifting One way to get around A/D imperfections is to dynamically
(and randomly) shift the range of the A/D. A random voltage can be added to the
input of the A/D and later be subtracted digitally from the A/D output. All the con-
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version hardware is thus operated at random levels within the operating range. A
web site describing this method is www.chipcenter.com/TestandMeasurement/
tn024.html.

� Digital noise This can be added to the A/D output. This technique is perhaps the
easiest to perform and it can be done with hardware or within the DSP processor.

Here are some dithering web sites:

� www.cinenet.net/�spitzak/conversion/dithering.html
� www.audioease.com/Pages/Barbabatch/TechInfo.html#aDithering
� www.edi.lv/dasp-web/sec-6.htm

Sample and Hold (S/H)
Analog inputs might be changing when they are sampled. Even after filtering out the
high-frequency components in the antialias filter, the input to an A/D might be chang-
ing while the A/D is performing its function. Some A/D converters might be thrown off
by a changing input, delivering an erroneous output. If the A/D converter must have a
stable input during the conversion process, then the converter itself generally has a sam-
ple and hold (S/H) amplifier built right into the A/D converter. If it does not, we would
have to add one before the A/D input. The S/H amplifier has a hold input that controls
the hold function. When low, the S/H amplifier’s output simply follows the input. When
high, it takes a quick snapshot of the S/H analog input value and freezes the S/H ampli-
fier output at that value. The S/H maintains this value long enough for the A/D to con-
vert it to a digital value.

Further information on S/H amplifiers can be downloaded from www.national.com/
an/AN/AN-775.pdf and www.om.tu-harburg.de/Download/Datasheets/Linear/NE_
SE5537.pdf. Check the application sections and the tips on acquisition.

Antialias Filters
Now that we’ve got some idea what has to be inside the A/D block in our DSP system,
what about the antialias filter? Well, the news here is even a bit tougher. We made a
statement a while back that the antialias filter should be a low-pass filter that filters out
all frequencies above the Nyquist Frequency. The ideal antialias filter would pass all
frequencies (untouched) up to the Nyquist Frequency. Above that breakpoint, the
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antialias filter should pass nothing. Figure 8-6 shows the nature of such a perfect
antialias filter.

The figure shows the filter’s response versus frequency. We can see that the filter per-
fectly passes all signals lower in frequency than 0.5 � Fs, the sampling frequency,
which is 0.5 in this example. Above that point, the filter passes nothing at all. This chart
is a typical frequency response chart for a component. The trouble is, it’s impossible to
build a filter that can do this. We must make compromises to achieve a suitable antialias
filter design.

So what problems exist with designing the perfect filter, as shown in the figure?

EXPENSE

An ideal antialias filter with an infinitely steep rolloff (defined shortly) like that in the
figure cannot be made. Filters are made with real-world components that have defini-
tive, complex impedances. This means the filter will have a transfer function that
reduces to differential equations with continuous solutions. This is all a complex way
to say that the filter’s frequency transfer chart will not have vertical rolloff lines. The
filter must have curves and ramps. The vertical dropoff shown in the ideal filter will
actually have to roll off with a less vertical drop. The more vertical the drop, the more
expensive and complicated the filter must be. This puts us in a bind. If we want a more
perfect filter, our expense goes up. If we want to save money, we will have to settle for
a less perfect filter.

The typical solution is to put the antialias filter at a frequency a bit lower than the
Nyquist Frequency and roll it off at a more gentle (cheaper) angle. A very similar solu-
tion is to put an imperfect antialias filter at the Nyquist Frequency and then move the
sampling frequency up about 20 percent. We’ll look at filter design shortly.
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FIGURE 8-6 A perfect, but impossible to find, antialias filter
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DISTORTION

The antialias filter itself will distort the very signals we are trying to measure. This
occurs because most signals are a mixture of different frequency waveforms. Only pure
sine waves contain single-frequency waveforms. Even a pure sine wave signal will get
distorted some by a filter, but signals composed of several frequency waveforms will
get distorted all the more because the different frequencies are treated differently by the
filter. We will see that even distortion can be used to our advantage if the distortion can
be predicted.

Over the years, the design of antialias filters has settled on a couple of good solu-
tions that designers can live with. A good filter will have a steep rolloff and a deep stop-
band, as shown in Figure 8-7.

ROLLOFF

The rolloff is the slope of the frequency response between the passband and the stop-
band. With an operational amplifier and a couple of components like an inductor and a
capacitor, it’s possible to get a 12 db/octave rolloff. This means that for every doubling
of the frequency, the filter attenuates the signals by a factor of 4.

STOPBAND

For a low-pass antialias filter, the stopband covers those higher frequencies that the low-
pass filter is supposed to eliminate. The stopband is the area to the right of the rolloff
curve that is dramatically lower than the low-pass frequency part of the curve.

As a rule of thumb, if the S/N ratio for the signals of interest is 40 db, we would want
all the actual high-frequency noise in the stopband to be 40 db or better down in the
stopband, such as Figure 8-7.
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FIGURE 8-7 An imperfect but realizable antialias filter
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ANALOG FILTERS

One simple way to make an antialias filter is with traditional analog electronics. With
very few analog components, it’s possible to get a filter with a decent rolloff and stop-
band. Figure 8-8 shows a schematic of a simple second-order filter and the transfer
function that goes with it.

L is the inductance, C is the capacitance, and R is the resistance. Resorting to Laplace
notations for the moment, the differential equation for this circuit is derived as follows:

Vout � ((1/Cs)/(1/Cs � R � sL))Vin
Vout � Vin/(s2LC � RCs � 1)

This same calculation is carried out at the following web sites:

� www.ee.polyu.edu.hk/staff/eencheun/EE251_material/
Lecture1-2/lecture1-25.htm

� http://engnet.anu.edu.au/courses/engn2211/notes/transnode19.html
� www.engr.sjsu.edu/f ilt175_s01/Proj_sp2ka/act_f il_cosper_fold/act_f il_

cosper.htm
� www.t-linespeakers.org/tech/filters/Sallen-Key.html

The transfer function is shown in Figure 8-9. The rolloff of this circuit is 12 db per
octave. Since this particular circuit rolls off indefinitely, the stopband should be well
below the noise floor of the input signal (and thus not a factor).

We should recognize that the differential equation of this circuit is very similar to the
second-order control system we studied in Chapter 2 on control systems. That’s because
direct analogies exist between the types of components as follows:

� Capacitors are the analog of mass. Just like energy is stored in mass as it gains
speed, so, too, energy is stored in a capacitor as electrons flow into it and the volt-
age builds up.
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FIGURE 8-8 A simple second-order analog filter
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� Inductors are the analog of springs. Inductors, like springs, act as an energy stor-
age element. Current moves through an inductor, creates a field around the induc-
tor, and builds up the voltage across it. Just like a spring can run out of stretch, so
too an inductor can exhaust the magnetic materials that absorb energy to create
the field around the inductor. As long as the amount of energy stored in the induc-
tor stays below a certain amount, it will function properly. The same is true of a
spring.

� Resistors are the analog of friction. A resistor, like friction, acts to slow down and
drain off the movement of energy between the other two components in the circuit.

The filter’s response to a step input is shown in Figure 8-10. The curve should look
very familiar since it’s virtually identical to the second-order control system we dis-
cussed before. The circuit could be used to drive a servo amplifier, but we leave it up
to the readers to figure out, given R, L, and C, how to find the values of the damping
constant d and the frequency v. It’s not our business here to use this circuit for anything
other than an antialias filter.

Given our example of a system with a 40 db S/N ratio, and using this particular cir-
cuit as an antialias filter, we can see what compromises we might have in the design of
our sampling system:

� If we have a second-order analog filter with a 12 db per octave rolloff, we’d need
better than 3 octaves to attain the desired rolloff for antialiasing:

(3 octaves � 12 db/octave � 4 db) � 40 db
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FIGURE 8-9 The frequency response of the second-order analog filter
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To get the stopband down to 40 db at the Nyquist Frequency with this filter, we’d
have to increase the sampling rate by a factor of 10 or so (3 octaves �).

� If we concatenate 2 such analog filters, we would get a 24 db per octave rolloff
and it would only be something less than 2 octaves to achieve the same results:

To get the stopband down 40 db at the Nyquist Frequency with this filter, we’d
have to increase the sampling rate by a factor of 3.7 or so: (2 octaves �).
This would be a good trade-off since the analog filters are relatively inexpensive,
and the DSP filters can be expensive, depending on the technology used.

� If we concatenate 3 such analog filters, we would get a 36 db per octave rolloff
and it would only be something more than 1 octave to achieve the same results:

To get the stopband down 40 db at the Nyquist Frequency with this filter, we’d
have to increase the sampling rate by a factor of 2.1 or so: (1 octave �). This, too,
would be a good trade-off. Details about analog filters can be found at
http://my.integritynet.com.au/purdic/lcfilters.htm and at www.freqdev.com/guide/
FDIGuide.pdf.

(1 octave �  36 db/octave �  4 db) �  40 db

(2 octaves �  24 db/octave �  8 db) �  40 db
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FIGURE 8-10 The step input response of the second-order analog filter
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DSP FILTERS

There’s no reason not to make an antialias filter using DSP techniques. We’ll be dis-
cussing how to synthesize a DSP filter next. Here are some good web sites and a PDF
file covering antialiasing filters:

� www.alligatortech.com/why_low_pass_filtering_is_always_necessary.htm
� www.dactron.com/pdf/appnote/aliasprotection.pdf
� http://kabuki.eecs.berkeley.edu/�danelle/arpa_0697/arpa.html
� http://members.ozemail.com.au/�timhoop/intro.htm

D/A Effects: Sinc Compensation
At the output of the DSP system, the D/A generates an output stream of analog values.
The D/A only outputs a series of analog values that look like a rectangular staircase of
constant voltages. Thus, the D/A inherently alters the output signal with the sinc func-
tion, which we’ll discuss again shortly. What’s needed within the DSP filter is an anti-
sinc compensation filter.

This antisinc precompensation filter can reside inside the DSP compute engine. Let’s
say the DSP compute engine generates D/A output values at a rate of N per second. The
antisinc predistortion computations are now added at the tail end of the DSP compute
engine. Just how this is done is up to the designer. Since all these systems are assumed
to be Linear Time Invariant systems, the antisinc filter can simply be added right into
the middle of the DSP calculations. The previous D/A results are fed into this new com-
pute block that runs computations for the antisinc compensation. The result is a new
compute block outputting a stream of D/A values at a rate faster than rate N. The D/A
will then run at a higher rate than normal. We smooth out the D/A values with a simple
low-pass filter at the D/A clock rate. The resulting output waveform will not be overly
distorted by the sinc effect. Note that running the D/A at a faster rate will mean higher
energy consumption.

Here are some PDFs further discussing sinc precompensation:

� http://pdfserv.maxim-ic.com/arpdf/AppNotes/A0509.pdf
� www.lavryengineering.com/pdfs/sample.pdf
� www.ee.oulu.fi/�timor/EC_course/chp_1.pdf
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DSP Filter Design
DSP filters are engines that do just exactly that: They process digital signals. DSP filters
process digital data in an organized way. DSP can be accomplished in hardware Field-
Programmable Gate Array (FPGAs) or the processing can be done in software. Even a
general-purpose computer can perform DSP calculations. DSP filters are a mathemati-
cal construct that can be realized in various physical ways. We will discuss the mathe-
matical structure first and the physical implementation much later in a separate section.
Until we get to that section, none of the following discussion refers to specific physical
implementations. This is a discussion in mathematical terms.

DSP filters process a digital stream that represents a signal. The stream of data will
be recomputed in a coordinated way to form the output stream of the filter. It is the
nature of the computation that gives the DSP filter the desired frequency transfer func-
tion. DSP filters can be constructed in many ways, but a few standard ways exist for
building such a filter. A standard DSP filter is defined by its structure: a generic
sequence of arithmetic operations executed on the input data stream. To make a custom
filter, designers take a standard DSP filter and modify it. Tools and formulae convert
the custom filter transfer function to a set of alterations of the standard DSP filter. The
alterations, when made, turn the standard DSP filter into the custom filter. To actually
construct the custom filter, the designers map both the standard DSP filter and the cus-
tom alterations to a physical implementation.

One of the simpler standard structures for a DSP filter is the Finite Impulse Response
(FIR) filter shown in Figure 8-11. The data sequences through a linear series of regis-
ters called taps. At each sampling clock, the data moves to the next tap. After the last
tap, the data is discarded. The output of the FIR filter at each clock is generally a sin-
gle data element formed by combining all the data in all the taps. The data in each tap
is multiplied by that tap’s coefficient and the results are summed to make the output
data. It is the vector of coefficients that turns the standard DSP FIR structure into the
custom FIR filter. Once the designers decide that a custom FIR filter can be built with
the standard FIR structure (a process to be discussed later), few design tasks remain
other than the generation of the coefficients.

The coefficients for a FIR filter can be designed in many ways. We would need
another whole book to describe all the methods. Instead, we’re going to describe per-
haps the simplest, most general way to design a FIR filter. The technique uses Fourier
transforms and a technique called windowing. We won’t go fully into exactly why this
technique works, but rather how it works.

The technique is general because it enables the construction of a filter with an arbi-
trary frequency transfer function. The designer can describe a custom-shaped frequency
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response (within bounds) and then apply the techniques. In practice, most filters have
very specific functions and the following four filters are the most commonly used
designs. Figure 8-12 shows low-pass, high-pass, band-pass, and band-stop filters:

� Low-pass The low-pass filter is designed to eliminate frequencies above the fil-
ter’s cutoff frequency. Primarily, the cutoff frequency and the cutoff attenuation
characterize the filter. It is commonly used to eliminate high-frequency noise or
as an antialias filter.
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FIGURE 8-11 FIR filter structure
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� High-pass The high-pass filter is designed to eliminate frequencies below the
filter’s cutoff frequency. Primarily, the cutoff frequency and the cutoff attenuation
characterize the filter. It is commonly used to eliminate a 60 Hz hum in systems
or to accentuate high-frequency components in audio channels.

� Band-pass The band-pass filter is designed to attenuate all frequencies except
those within a narrow band. The filter is characterized primarily by the two fre-
quencies (start of band and end of band) and the cutoff attenuation.

� Band-stop The band-stop filter is designed to attenuate all frequencies within
a narrow band. The filter is characterized primarily by the two frequencies (start
of band and end of band) and the cutoff attenuation.

The Fourier approach to designing an FIR filter starts with the required shape of the
filter transfer function. The four previous filters are examples, and we will move for-
ward with the low-pass example. The math that follows is general and applies to any
filter transfer function (within certain bounds). The URLs cited later allow designers to
specify filter parameters and start a computation. The computations executed on the
web sites use math similar to the math we’ll describe next.

Subject to conditions, a simple filter’s frequency response can be put in the general
form:

where N will become the number of taps in the FIR filter. c(n) will become the coeffi-
cient of the nth tap. Or by mathematical substitution,

F(jv) �  �(n �  0, N �  1) (c(n) �  (cos(nv) �  j sin( nv) ) )

F(jv) �  �(n �  0 , N �  1) (c(n) �  e� jnv)
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FIGURE 8-12 Different types of filters for different purposes
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Figuring out the coefficient c(n) from this formula might involve some difficult cal-
culus with an integral over a range of 2p. This is the case for a general-purpose (cus-
tom) frequency response, but if the frequency response curve is like the low-pass filter,
the calculations are simpler. The gain is flat at a value of 1 and then drops off completely
(in the ideal math equation). Taking advantage of the simplified filter shape, and with
a few other mathematical manipulations, the integral reduces to a closed math solution
as follows:

Using the math identity sinc (x) � sin(x)/x,

The sinc function is well known as the spectral envelope of a train of pulses. Figure
8-13 shows the shape of the sinc function.

One of the difficulties of the Fourier method is that it produces an infinite set of coef-
ficients. This presents a problem because we cannot have an infinite number of taps in
the FIR filter. If we simply eliminate some taps, the filter won’t work as designed or
simulated.

Instead, various techniques are used to minimize the taps to a conveniently small
number. These techniques create a window value for every coefficient in the infinite
series. All the coefficients are multiplied by the window during the FIR filter compu-
tations. All these windows limit the number of coefficients to the desired number of
taps because the window has a value of zero for taps outside the range of the window.

c(n) �  v sinc (nv)/p

c(n) �  (sin (nv)/np)
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FIGURE 8-13 The sinc function
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This means the FIR filter can be limited to a specific number of taps based on the win-
dow. Most of these windows keep the center taps (generally with the largest coeffi-
cients) and decrease the size of the window to zero as it reaches the edge coefficients.

The windows have well-known names and predictable effects on the filter. They are
automatically added to the calculations since a window must be used to have a calcu-
lation at all. The URLs that follow allow us to perform calculations using JAVA tools.
They have the windows built in to the Java tool that computes the coefficients and shows
you the resultant filter transfer function. Each window has its strength and weaknesses,
but we must choose a window for every calculation. Some of the windows are outlined
here. In each case, we show the shape of the window. In addition, we show a FIR filter
built with all the same parameters except for the choice of window type.

� Rectangular window The rectangular window simply sets every window value
to 1 around the center coefficient. This is true right to the edge of the filter.
Outside the filter, all the coefficients are zeroed out of the window. The window
chart has a characteristic rectangular shape. The rectangular window is easy to
compute on the fly since only multiplication by unity is required. Most FIR filter
coefficients, however, are precomputed during the design phase (see Figure 8-14).
The math behind the rectangular window is explained at http://mathworld.
wolfram.com/UniformApodizationFunction.html.

� Bartlett (triangular) window The triangular window simply sets every win-
dow value to a linearly decreasing value starting at the center coefficient. Right at
the edge of the filter, it reaches zero. Outside the filter, all the coefficients are
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FIGURE 8-14 Rectangular DSP window and frequency response
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zeroed out of the window. The window chart has a characteristic triangular shape
(see Figure 8-15). The math behind the Bartlett function is explained at http://
mathworld.wolfram.com/BartlettFunction.html.

� Hanning window This window is used to implement the Raised Cosine filter
that we’ll discuss later (see Figure 8-16). The math behind the Hanning window
is shown at http://mathworld.wolfram.com/HanningFunction.html.
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FIGURE 8-15 Triangular DSP window and frequency response
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FIGURE 8-16 Hanning DSP window and frequency response
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� Hamming window This is a minor modification of the Hanning window (see
Figure 8-17). The math behind the Hamming window is shown at http://mathworld.
wolfram.com/HammingFunction.html.

� Blackman window Similar to the Hamming and Hanning windows, the
Blackman window has an extra term to reduce the ripple (see Figure 8-18). The
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FIGURE 8-17 Hamming DSP window and frequency response
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FIGURE 8-18 Blackman DSP window and frequency response
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math behind the Blackman window is shown at http://mathworld.wolfram.com/
BlackmanFunction.html. More windows are shown at these sites:

� http://astronomy.swin.edu.au/�pbourke/analysis/windows/
� http://mathworld.wolfram.com/ApodizationFunction.html
� www.filter-solutions.com/FIR.html#asinxx

Among the web sites dedicated to filtering, the FIR Filter Design by Windowing site
has a nice user interface where you can see the results of an FIR filter design
(http://web.mit.edu/6.555/www/fir.html). It was used to make this chapter’s figures. To
use the tool, change the parameters, reselect the window type on the top pulldown list
to recompute the coefficients, and redisplay the results.

In playing with this utility, I suggest altering just one parameter at a time. Try run-
ning a few other experiments as well. Notice how increasing the number of taps makes
the filter rolloff sharper. Also notice that the ripple in the filter is largely unaffected by
having more taps.

Physical Implementation of DSP Filters
As we mentioned before, all the DSP techniques we’ve mentioned so far are mathe-
matical in nature.

FIR FILTERS

The physical implementation of antialiasing and dithering circuits notwithstanding, the
structure of a FIR filter is theoretical: a series of registers, coefficients, and adders that
form an arithmetic output. The DSP calculations can be performed in hardware or soft-
ware. In most cases, the calculations could be done either way.

Software

Those of us who build hardware for a living can relate to feelings of frustration when
it comes to DSP software. Somehow DSP programmers feel the DSP answers just float
out of the air, computations unsullied by the presence of hardware or electrons. The
truth is, DSP computers are very much hardcore hardware, specially designed for DSP
calculations. We’ve discussed DSP computers previously in the book, so I won’t go into
the structure. The DSP chips are specially designed to be efficient at handling the types
of calculations that are required for FIR filters. Specific logical structures within the

DIGITAL SIGNAL PROCESSING (DSP) 215

08_200256_CH08/Bergren  4/10/03  4:39 PM  Page 215



DSP can be used as a string of FIR registers and coefficient registers. Also, structures
are used to move data efficiently through the DSP chip as rapidly as possible. DSP pro-
grammers can take advantage of many library functions. Implementing a simple FIR
filter can be accomplished just by specifying the number of taps and the coefficients.
The DSP compiler takes care of the rest of the work.

Hardware

Well, enough ranting about software and hardware people. The sad truth is, we need
each other. Even the pure hardware implementation of FIR filters requires a significant
amount of software tools and programming. Prepackaged implementations of FIR fil-
ters are available, but not common. The most common way they are implemented is in
Application-Specific Integrated Circuits (ASICs) or FPGAs. FPGAs contain many reg-
isters and logic elements that can be configured using software. The software is typi-
cally written in higher-level languages like VHDL or Verilog. The VHDL code lines
engender tap registers, coefficient registers, and Multiply and Accumulate (MACs). The
entire FIR filter structure is visible right in the code itself. When the VHDL code is
compiled and loaded into an FPGA, the FIR filter takes on a physical instantiation.

Here are some web sites describing FIR filter design in such languages:

� www.doulos.com/fi/vhdl_models/model_9605.html
� www.item.uni-bremen.de/research/papers/paper.pdf/Helge.Bochnik/nato93/

boc9301.pdf
� www.altera.com/support/examples/verilog/ver_base_fir.html

Testing FIR Filters

Several easy tests can be run on a FIR filter design when it is first tested. Some tests
are so simple they can be built right into the physical implementation. This allows the
test to be executed at a later time. The FIR filter tests are as follows:

� Coefficient test Feed the FIR filter a series of data points consisting of all
zeroes with a single full value in the middle of the stream. As the full value hits
each FIR filter tap along the way, the output will be a serial stream equal to all the
coefficients right in order.

� Frequency sweep To test any filter, analog or DSP, sweep it with a series of pure
sine waves. The frequency response curve should be similar to that shown in the
DSP design software. Further, if we continue the sine wave sweep above the
Nyquist frequency, we should observe the effects of the antialias filter. If we
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observe a significant response from the filter above the sampling frequency, we
should reexamine the integrity of the antialias filter design. The output sine waves
should be clean and well behaved.

The FIR Filter FAQ site contains a thorough explanation of FIR filters and lists a few
more tests that can be run (www.dspguru.com/info/faqs/firfaq.htm). The following sites
describe FIR filters and have various tools for designing them:

� http://web.mit.edu/6.555/www/fir.html
� www.nauticom.net/www/jdtaft/fir.htm
� www.filter-solutions.com/FIR.html#asinxx

INFINITE IMPULSE RESPONSE (IIR) FILTERS

Okay, now that we’ve wrestled FIR filters to the ground, here’s another wrinkle. Infinite
Impulse Response (IIR) filters are another option for designing a DSP filter. Although
a FIR filter passes signals once through in a fixed, linear sequence, IIR filters have feed-
back loops. Output signals, even intermediate signals, are fed backwards during the pro-
cessing. This has a few implications:

� IIR filters are shorter. Think for a minute about the path that data takes through
an IIR filter. Instead of going through once, like in a FIR filter, the data may be
fed back a few times. These extra loops through the IIR filters act almost as exten-
sions of the filter. The result is that an IIR filter can get similar results with much
fewer taps. Let’s look at a rough comparison.
Figure 8-19 is from a rectangular windowed FIR filter with 34 taps. It drops off
20 db in a frequency range of about 0.050 normalized.
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FIGURE 8-19 DSP FIR filter frequency response with a 34-tap filter
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Figure 8-20 is from a twelfth-order Butterworth IIR filter. It too drops about 20 db
in a frequency range of about 0.050 normalized.
But the IIR filter is just twelfth order, made out of a series of second-order IIR fil-
ters. A second-order filter can take many different structures. One example is
shown in Figure 8-21. Each order is the hardware equivalent of about 2 FIR taps,
so a twelfth-order IIR filter is the equivalent of about 24 FIR taps, shorter for the
same results.
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FIGURE 8-20 DSP FIR filter frequency response with a twelfth-order filter

FIGURE 8-21 A second-order IIR filter
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Diagrams for the design of IIR second-order filters can be found at
http://spuc.sourceforge.net/iir_2nd.html and at www.nauticom.net/www/jdtaft/
biquad_section.htm.

� IIR filters have phase shift. The group delay of the FIR and IIR filters we just
compared is shown in Figure 8-22 and Figure 8-23. The FIR filter has a relatively
fixed delay of 16.5 periods, which might be expected for a 34-stage FIR filter
sampled at twice the frequency. I suspect the chart should have shown a flat delay
of exactly 17 periods. This means there will be a fixed but constant delay in the
FIR filter output.
The IIR filter has a variable delay, depending on the frequency of the input sig-
nal. Slower signals have a zero delay! The IIR second-order stage has a straight-
through path, so signals get through right off the bat. Higher-frequency signals
have an increasing delay approaching 19 clock periods. Because most IIR filters
have different delays at different frequencies, they generally distort signals in ways
that FIR filters do not. This may be a small price to pay for the smaller real estate
used up in the construction of an IIR filter (see Figure 8-23). Another web site
about IIR filters can be found at www.dspguru.com/info/faqs/iirfaq.htm.
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FIGURE 8-22 FIR filter delay

FIGURE 8-23 IIR filter delay
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Multirate DSP
Multirate DSP filters are very similar to FIR and IIR filters, except data comes out of
the filter at a different rate than it goes into the filter. We will not go into the exact tech-
niques, but it bears mentioning in the book. This is used when sampled data is already
available, but the data rate does not match the rate needed in a specific application. A
specific example might be a digital video signal coming in at a full broadcast rate. At
270 million bits per second, it’s might be too much data to send out over the Internet!

So the question is, how do we chop the data down to a lower bit rate even before we
use MPEG to compress it for Internet transmission? It might make sense to decrease
the video rate by a factor of three or five before sending it into the MPEG compression
engine. A multirate DSP filter is perfect for this task. CommDesign offers a tutorial
describing the basic techniques of multirate DSP at www.commsdesign.com/design_
center/broadband/design_corner/OEG20020222S0071.

The following URLs have further information that might be useful in studying DSP:

� http://dspguru.com/info/tutor/index.htm
� http://ece-www.colorado.edu/�ecen4002/4 _filter_structures.ppt
� www.nauticom.net/www/jdtaft/
� www.dspguru.com/info/tutor/other.htm

Digital Signal Processing is a powerful tool we can use in the design of robots. If we
pay attention to a few basic theorems and construct the DSP engine the right way, we
can get very predictable performance.
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COMMUNICATIONS 

It’s not often one stares in the mirror and sees a perfect reflection, especially one that
goes backward in time. But these things happen and they are not to be missed.

Take five minutes ago, for instance. I sat down in a quiet moment to reflect on how
to teach the vast field of communications in one chapter. This is what I saw.

I spent eight years in English classes and not one of my teachers managed to convey
to me the central purpose of their course. They were there to teach me how to commu-
nicate, from person to person. Such communication might happen through interactive
conversation, through my writings, or through books. But not one of those eight teach-
ers saw to it that I understood the basic purpose of the course. They failed to commu-
nicate, to me, the single most important piece of information they had to offer! Being
a responsible adult, I do take responsibility for this. But what does this also say about
our education system? I won awards for my achievements in English classes. And all
the while even I knew that my English was crumby (sic)!

So I sat down and searched the entire Internet for the definition of communication.
These were the URLs that turned up, in the very order that I searched them. This is what
I found:
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� WorldCom, a large communications company
www.worldcom.com/global/resources/glossary/?attribute=term&typeOfSearch=
2&searchterm=communications
Defines communication as “The transmission or reception of information, signals,
or messages.

� Merriam-Webster’s, online dictionary
www.m-w.com/cgi-bin/dictionary
A process by which information is exchanged between individuals through a com-
mon system of symbols, signs, or behavior.

� St. John’s Episcopal Church
www.stjohnsdetroit.org/html-stj/06152000newsletter.html
Offers that it is “The act of imparting or transmitting ideas, information, etc.

� Professor Robert J. Schihl
www.regent.edu/acad/schcom/phd/com707/def_com.html
Communication is a process in which a person, through the use of signs (natural,
universal)/symbols (by human convention), verbally and/or non verbally, con-
sciously or not consciously but intentionally, conveys meaning to another in order
to affect change.

� Ted Slater
www.ijot.com/ted/papers/communication.html
Has this to say: “‘Communication,’ which is etymologically related to both ‘com-
munion’ and ‘community,’ comes from the Latin communicare, which means, ‘to
make common’ (Weekley, 1967, p. 338), or ‘to share.’ DeVito (1986) expanded on
this, writing that communication is ‘[t]he process or act of transmitting a message
from a sender to a receiver, through a channel and with the interference of noise’
(p. 61). Some would elaborate on this definition, saying that the message trans-
mission is intentional and conveys meaning in order to bring about change.”

Okay, we can stop right here. Honest, these last two sites turned up in my random
search. I’m going with Ted Slater, who probably spent some valuable hours with Pro-
fessor Schihl. So today, kudos go to Regent University for not only stating a very clean
definition of communication, but for broadcasting it to the world in a successful manner.

Readers wanting an alternate interpretation of Ted’s web page are urged, again, to
read R.D. Laing’s book The Politics of Experience. Is it odd that it should take psy-
chologists and professors at denominational universities to set the record straight?

So now I stand here with one chance to define what communication is. Here we go:

Communication is the process of sending information from source to destination.
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Whoa. Don’t jump yet. Here are my disclaimers.

� Nothing in my definition says the information has to arrive error free. Most infor-
mation is sent with the full knowledge that it will be corrupted some en route. TV
transmissions are surely in this category.

� Nothing in my definition says information cannot also go the other way during the
same communication process. As long as information still gets from the source to
the destination, the definition holds.

� I disagree that we must always ascribe motivation to the sender. Professor Schihl
must argue his positions with passion! Although some communication is certainly
useful in effecting societal change, much human communication is routine.

� The source and destination can be humans or machines. For that matter, some
information is just sent to the dump, which hardly qualifies as communication.
This makes the good professor’s definition look a bit better!

� Most communication (99.9 percent?) falls on deaf ears. We need only go to the
newspaper recycling plants to see this. Humans these days must be adept at tun-
ing out the flood of communications coming at them from TV, radio, email, the
Internet, and newspapers.

� Ted’s expanded definition includes the communication channel and noise. These
considerations are one layer down inside my definition. We’ll get to them shortly.

So why is communications a topic in a book about robots? Well, we’ve entered an era
where communication traffic is growing rapidly. Further, the amount of data stored in
computers and data banks is growing rapidly as well. It’s increasing something like 50
percent a year if we believe the storage industry hype.

Just as communication is vital to the effectiveness and power of people, so too will
it become more important to robots. The modern employee is much more effective with
the ability to get email and surf the Internet. As robots become more capable, commu-
nications will become more important to their design. At the very least, communication
permits the remote monitoring of robots for many different purposes. To design robots
well, a robot designer should have a firm grasp of communications.

Now, given that this is the twenty-first century, we are going to confine our discus-
sion to digital communications and forgo all discussion of analog communications. True
enough, digital communications do use analog electronics, but the prevailing mode of
electronic communications today is digital. Cable TV, telephones, cell phones, and the
Internet are all digital communications.
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OSI Seven-Layer Model
Some years ago, a group got together in an attempt to define a model for the way com-
munications should be structured, which was known as the Open Systems
Interconnection (OSI) seven-layer model (www.scit.wlv.ac.uk/�jphb/comms/std.7layer
.html). Nobody really followed the model from top to bottom, but Transmission Control
Protocol/Internet Protocol (TCP/IP) network communication comes the closest; how-
ever, the model is useful at the very least as a checklist for the types of things we might
want in a communications system. Given that it’s also worth learning just for network
communications, let’s delve into it.

LAYER 1: PHYSICAL LAYER

The data layer is the lowest layer and defines the physical and electrical characteristics.
It is the layer dealing with sending bits over the physical medium. All communications
have a physical layer of some sort. In some systems, it may be the only layer. Baseband
communications, modulation, demodulation, and transmission through the channels are
all topics that loosely belong in this layer.

LAYER 2: DATA LINK LAYER

This layer deals with blocks of data on the physical media. It controls the sharing of the
communication path, frames, flow control, and some low-level error checking. This is
the multiple access (MAC) layer in network communications. Many strategies exist for
sharing access to a transmission channel. Access and error-checking techniques are top-
ics we can cover that belong to this layer.

LAYER 3: NETWORK LAYER

This layer is responsible for routing, making, maintaining, and breaking connections.
This is the IP layer in network communications.

LAYER 4: TRANSPORT LAYER

This layer is responsible for the error-free transmission of data from one machine to
another. This is the TCP layer in network communications.
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LAYER 5: SESSION LAYER

This layer handles the life of the current connection and keeps the data traffic moving.

LAYER 6: PRESENTATION LAYER

This layer handles the data from applications. It performs packing, encryption, decryp-
tion, compression, and so on.

LAYER 7: APPLICATION LAYER

This layer is where the application software resides. More information about the seven-
layer model can be found at the following PDF and web sites:

� www.itp-journals.com/nasample/t04124.pdf
� www.itp-journals.com/OSI_7_layer_model_page1.htm
� www.scit.wlv.ac.uk/�jphb/comms/std.7layer.html
� www.cs.cf.ac.uk/Dave/Internet/node51.html

Not everyone is happy with the seven-layer OSI model. Check out www.randywanker
.com/OSI/ (rated R) and www.scit.wlv.ac.uk/�jphb/comms/osirm.crit.html

A couple of underlying ideas are behind the layering of this stack that applies across
most communications:

� Hidden functions The stack layers interact with a fixed interface. Portions of
the stack can be redesigned internally and still function properly.

� Common interfaces Because the stack layers interact with a fixed interface,
two different machines can communicate with each other without a problem. They
simply communicate from the same level to the same level. For example, TCP
information at level 4 in one machine travels down the stack to the physical level
and is sent to the other machine. At the receiving machine, it enters the physical
level and travels up to level 4 where it appears as TCP information again.

Many communication techniques lead to standards that can be observed by all
designers at various stack levels. Most communication standards are limited to just a
few levels of complexity. They all have physical and link layers. Many have network
and transport levels, but not many go to higher levels.
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Physical Layer
All that said, digital communication comes down to one thing: sending data over a chan-
nel. Another fundamental theorem came out of Shannon’s work (first mentioned in
Chapter 8). It comes down to an equation that is the fundamental, limiting case for the
transmission of data through a channel:

C is the capacity of the channel in bits per second, B is the bandwidth of the channel
in cycles per second, and S/N is the signal-to-noise ratio in the channel.

Intuitively, this says that if the S/N ratio is 1 (the signal is the same size as the noise),
we can put almost 1 bit per sine wave through the channel. This is just about baseband
signaling, which we’ll discuss shortly. If the channel has low enough noise and supports
an S/N ratio of about 3, then we can put almost 2 bits per sine wave through the channel.

The truth is, Shannon’s capacity limit has been difficult for engineers to even
approach. Until lately, much of the available bandwidth in communication channels has
been wasted. It is only in the last couple of years that engineers have come up with
methods of packing data into sine waves tight enough to approach Shannon’s limit.
Shannon’s Capacity Theorem plots out to the curve in Figure 9-1.

There is a S/N limit below which there canot be error free transmission. C is the
capacity of the channel in bits per second, B is the bandwidth of the channel in cycles

C �  B �  log2 11 �  S>N 2
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FIGURE 9-1 Shannon’s capacity limit
-8

0

2

44

66

-2 -1 0 1 2 3 4 5 6 7 8 9 1011 121314151617 181920

2

Bits per Hertz

Eb/No

09_200256_CH09/Bergren   4/17/03  11:24 AM  Page 226



per second, S is the average signal power, N is the average noise power, No is the noise
power density in the channel, and Eb is the energy per bit. Here’s how we determine the
S/N limit:

Since

Raising to the power of 2,

If we make the substitution of the variable x � Eb � C/No � B, we can use a math-
ematical identity. The limit (as x goes to 0) of (x � 1)1/x � e.

We want the lower limit of capacity as the S/N goes down. In the limit, x goes to zero
as this happens. We have to transform the last equation and take the limit as x goes
to zero.

In dB, this number is -1.59 dB. Basically, if the signal is below the noise by a small
margin, we are toast! Figure 9-1 shows this limit on the leftside.

limit Eb>No �  .69

limit No>Eb �  log2e �  1.44

log2 1x �  1 21>x �  No>Eb

x �  log2 1x �  1 21>x �  C>B

log2 1x �  1 2 �  C>B

1 �  Eb �  C>No �  B �  2C>B

Eb �  C>No �  B �  2C>B �  1

Eb �  C>No �  B �  2C>B �  1

Eb>No �  1B>C 2 �  12C>B �  1 2

2C>B �  1 �  1Eb �  C 2> 1No �  B 2

C>B �  log2 11 �  1Eb �  C 2> 1No �  B 2 2

S �  Eb �  C

C>B �  log2 11 �  S> 1No �  B 2 2

C �  B � log2 11 �  S>N 2
N �  No �  B

S>C �  Eb
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This sets the theoretical limit that any modulation system cannot go beyond. It has
been the target for system designers since it was discovered. The limit will show up
below in the error rate curves of various modulation schemes.

Many ways exist for jamming electrons down wires or waves across the airways. In
all these cases, the channel has a bandwidth. Sometimes the bandwidth is limited by
physics; sometimes the Federal Communications Commission (FCC) limits it. In both
cases, Shannon’s Capacity Theorem applies: putting God and the FCC on equal math-
ematical footing.

A quick aside about the FCC: After college, we constructed and ran a pirate radio sta-
tion out of a private house. We broadcast as WRFI for about two years, playing the music
we felt like playing and rebroadcasting the BBC as our newscast. I was a DJ and a periph-
eral player. We had fake airwave names to hide our identities; mine was Judge Crater.
Finally, after a great run, the FCC showed up at our door to shut us down. They had
tracked us down in a specially modified station wagon with a directional antenna molded
into the roof. They only had to follow a big dashboard display arrow to our door. It turns
out the DJ at the time was playing a Chicago blues album. The FCC agents confessed
that they liked the music so much that they pulled over until the album was complete
before they knocked on the door. The DJ opened the door, the FCC employee folded open
his wallet just like Jack Webb on Dragnet, and the DJ got a look at the laminated FCC
business card. Both sides, in turn, dissolved in laughter. Two hours, and some refresh-
ments later, they departed with our crystal, a very civilized conflict. But I digress.

Here are a couple of web sites and a PDF on Shannon’s Capacity Theorem:

� www.owlnet.rice.edu/�engi202/capacity.html
� www.cs.ncl.ac.uk/old/modules/1996-97/csc210/shannon.html
� www.elec.mq.edu.au/�cl/files_pdf/elec321/lect_capacity.pdf

Every method of sending data across a channel has a mathematical footing. Often,
the method itself leads to a closed mathematical form for the capacity of the method.
Once the method is implemented, then the implementation can be tested using
Shannon’s Capacity Theorem. Calibrated levels of noise can be added to a perfect chan-
nel and the data-carrying capability can be measured. The testing methods are very
complex and are shown at www.elec.mq.edu.au/�cl/files_pdf/elec321/lab_ber.pdf.

Baseband Transmission
Given a wire, it’s entirely possible to turn the voltage off and on to form pulses on the
wire. In its crudest form, this is baseband transmission, a method of communication
distinct from modulated transmission, which we’ll discuss later.
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Baseband transmission is used with many different types of media. Data transmis-
sion by wire has occurred since well before Napoleon’s army used the fax machine.
Yes, the first faxes dropped on the office floor about that time in history (www
.ideafinder.com/history/inventions/story051.htm).

Baseband transmission is also used in tape drives and disks. Data is recorded as
pulses on tape and is read back at a later time.

A sequence of pulses can be constructed in many different ways. Engineers have nat-
urally come up with dozens of different ways these pulses can be interpreted. As is often
the case, other goals exist besides just sending as many bits per second across the chan-
nel as possible. However, in satisfying other goals, channel capacity is sacrificed. Here’s
a list of other goals engineers often have to solve while designing the way pulses are
put into a channel:

� Direct Current (DC) balance Sometimes the channel cannot transmit a DC
voltage at all. A continuous string of all ones might simply look like a continu-
ously high voltage. Take, for instance, a tape drive. The basic equation for voltage
and the inductance of the tape head coil is

V is the input signal, L is the inductance of the tape head’s coil, and I is the current
through the coil. If V were constant, we’d need an ever-increasing current through
the coil to make the equations work. Since this is impossible, tape designers need
an alternate scheme. They have come up with a coding of the pulses such that an
equal number of zeroes and ones feed into the tape head coil. In this way, the DC
balance is maintained. Only half as many bits can be written as before, but things
work out well. The codes they use are a version of nonreturn to zero (NRZ).

� Coding for cheap decoders Some data is encoded in such a way that the
decoder can be very inexpensive. Consider, for the moment, pulse-width-encoded
analog signals. A pulse is sent every clock period, and the duty cycle of the pulse
is proportional to a specific analog voltage. The higher the voltage, the larger the
duty cycle, and the bigger percentage of time the pulse spends at a high voltage.
At the receiver, the analog voltage can be recovered using just a low-pass filter
consisting of a resistor and a capacitor. It filters out the AC values in the wave-
form and retains the DC. These types of cheap receiver codes are best used in sit-
uations where there have to be many inexpensive receivers.

� Self-clocking Some transmission situations require the clock to be recovered at
the receiving end. If that’s the case, select a pulse-coding scheme that has the clock
built into the waveform.

� Data density Some pulse-coding schemes pack more bits into the transmission
channel than others.

V �  L �  dI>dt
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� Robustness Some pulse-coding schemes have built-in mechanisms for avoid-
ing and/or detecting errors.

The following PDFs and web site provide a good summary of the advantages and dis-
advantages of various coding methods:

� www.elec.mq.edu.au/�cl/files_pdf/elec321/lect_lc.pdf
� http://murray.newcastle.edu.au/users/staff/jkhan/lec08.pdf
� www.cise.ufl.edu/�nemo/cen4500/coding.html

PULSE DISTORTION: MATCHING FILTERS

One of the difficult problems with the transmission of pulses through a channel (wire,
fiber optics, or free space) is that the pulses become distorted. What actually happens
is that the pulses spread out in time. If the overall transmission channel has sharp fre-
quency cutoffs, as is appropriate for a densely packed channel, then the pulses come out
of the receiver looking like the sinc function we looked at earlier. The pulse has spread
out over time (see Figure 9-2).

If we try to pack pulses like this tightly together in time, they will tend to interfere
with each other. This is commonly called Intersymbol Interference (ISI), which we will
discuss later (see Figure 9-3).

But there’s a kicker here. A transmission channel cannot be perfect, with sharp
rolloffs in frequency. As a practical matter, we must allow extra bandwidth and relax
our requirements on the transmission channel and the transmission equipment. A com-
mon solution to this problem is the Raised Cosine Filter (RCF), a filter we saw before
in Chapter 8 as the Hanning window. A common practice is to include this matching
RCF in the transmitter to precompensate the pulses for the effect of the channel. The
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FIGURE 9-2 Received pulses spread out to look like the sinc function.
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received pulse signals, even though they have oscillations in their leading and trailing
edge, cross zero just when the samples are taken. That way, adjacent pulses do not inter-
fere with one another (see Figure 9-4).

The following sites discuss the RCF:

� www.iowegian.com/rcfilt.htm
� www-users.cs.york.ac.uk/�fisher/mkfilter/racos.html
� www.ittc.ukans.edu/�rvc/documents/rcdes.pdf
� www.nuhertz.com/filter/raised.html

COMMON BASEBAND COMMUNICATION STANDARDS

The following are some relatively common wired baseband communication links that
we all have used. These are communication links that have relatively few wires and are
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FIGURE 9-3 A poor receive filter enables consecutive pulses to interfere
with each other.

Intersymbol Interference

FIGURE 9-4 A good raised cosine receive filter makes consecutive pulses
cooperate.

All pulses cross 0 at decision time.
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generally considered serial links. Many computer boards come already wired with these
sorts of communication ports, and many interface chips are available that support them.

� RS232/423 RS232/423 has been around since 1962 and is capable of sending
data at up to 100 Kbps (RS423) over a three-wire interface. It is considered to be
a local interface for point-to-point communication. It’s supposed to be simple to
use, but it can cause a considerable amount of grief because many optional wires
and different pinouts exist for various types of connectors. Other than the physi-
cal layer and the definition of bit ordering, very little layering takes place above
the physical layer with RS232. For more info, go to www.arcelect.com/rs232.htm
and www.camiresearch.com/Data_Com_Basics/RS232_standard.html.

� RS422 RS422 uses differential, balanced signals, which are more immune from
noise than RS232’s single-sided wiring. Data rates are up to 10 Mbps at over 4,000
feet of wiring. Other than the physical layer and the definition of bit ordering, very
little layering is done with RS422 (also see www.arcelect.com/rs422.htm).

� 10BT/100BT/1000BT networking Ethernet is one of the most popular local
area network (LAN) technologies. 10BT LAN technology enables most business
offices to connect all the computers to the network. The computers can transmit
data to one another at speeds approaching 9 to 10 million bits per second. As a
practical matter, on busy networks, the best rates a user can achieve are much
lower. The software stack includes up to four layers from physical layer 1 (network
interface [NIC] cards), up to IP, and to TCP at layer 4.
100BT is 10 times faster than 10BT. 1000BT is 10 times faster again and avail-
able for use with a fiber-optic physical layer as well as copper wiring. See these
web sites and PDF files for more info:

� www.lantronix.com/learning/tutorials/
� www.lothlorien.net/collections/computer/ethernet.html
� ftp://ftp.iol.unh.edu/pub/gec/training/pcs.pdf
� www.10gea.org/GEA1000BASET1197_rev-wp.pdf

Modulated Communications
Sometimes digital communications just cannot be sent over a channel without modula-
tion; baseband communications will not work. This might be the case for several reasons:

� Sometimes wiring is not a possibility because of distance. Unmodulated data sig-
nals are generally relatively low in frequency. Transmitting a slower baseband sig-
nal through an antenna requires an antenna roughly the size of the wavelength of
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the signal itself. For an RS232 signal at 100 Kbps, the signal has a waveform with
about 10 microseconds per bit. Light travels 3,000 meters, about 2 miles, in 10
microseconds. We’d need an antenna two miles long to transmit such a signal effi-
ciently into the impedance of space. Clearly, this won’t work well. It’s one of the
primary reasons almost no baseband wireless communication systems exist. They
almost all use modulation.

� Sometimes the channel is so noisy that special techniques must be used to encode
the signal prior to transmission.

� The FCC and other organizations regulate the use of transmission spectra.
Communication links must be sandwiched between other communication links in
the legal communication bands. To keep these competing communication links
separate, precision modulation is used.

Modulation generally involves the use of a carrier signal. The information signal (I)
is mixed (multiplied by) the carrier signal (C), and the modulated signal (M) is broad-
cast through the communication channel:

Although many different signals can be used as the carrier C, the type of signal most
often used is the sine wave. Although the operation x can be just about any type of oper-
ation, the most common type of mixing involves multiplication.

A sine wave only has a few parameters in its equation. Thus, modulating a carrier
sine wave can only involve a few different operations:

where A is the amplitude, v is the frequency, and u is the phase.
Any modulation of this carrier wave by the data must involve a modification of one

or more of these three parameters. One or more of the parameters (A, v, or u) may take
on one or more values based on the data. As the data input, I, takes on one of n differ-
ent values, the modulated carrier wave takes on one of n different shapes to represent
the data I. The following 3 discussions describe modulating A, v, and u in that order.

� Amplitude Shift Keying (ASK) sets

where A is one of n different amplitudes, v is the fixed frequency, and u is the
fixed phase. In the simplest form, n � 2, and the waveform M looks like a sine
wave that vanishes to zero whenever the data is zero (A � 0 or 1).

M1n 2 �  An �  sin 1v �  t �  u 2

C �  A �  sin 1v �  t �  u 2

M �  I �  C

COMMUNICATIONS 233

09_200256_CH09/Bergren   4/17/03  11:24 AM  Page 233



� Frequency Shift Keying (FSK) sets

where A is the fixed amplitude, vn is one of n different frequencies, and u is the
fixed phase. In the simplest form, n � 2, and the waveform M looks like a sine
wave that slows down in frequency whenever the data is zero (v� freq0 or freq1).

� Phase Shift Keying (PSK) sets

where A is the fixed amplitude, v is the fixed frequency, and un is one of n dif-
ferent phases. In the simplest form, n equals 2, and the waveform M looks like a
sine wave that inverts vertically whenever the data is zero (u� 0 or 180 degrees).

Each modulation method has a corresponding demodulation method. Each modula-
tion method also has a mathematical structure that shows the probability of making
errors given a specific S/N ratio. We won’t go into the math here since it involves both
calculus and probability functions with Gaussian distributions. For further reading on
this, please see the following web site and PDF file:

� www.sss-mag.com/ebn0.html
� www.elec.mq.edu.au/�cl/files_pdf/elec321/lect_ber.pdf

What comes out of the calculations are called Eb/No curves (pronounced “ebb no”).
They look like the following figure, which shows a bit error rate (BER) versus an
Eb/No curve for a specific modulation scheme (see Figure 9-5).

Remember, Eb/No is the ratio of the energy in a single bit to the energy density of
the noise. A few observations about this graph:

� The better the S/N ratio (the higher the Eb/No), the lower the error rate (BER). It
stands to reason that a better signal will work more effectively in the channel.

� The Shannon limit is shown as a box. The top of the box is formed at a BER of
0.50. Even a monkey can get a data bit right half the time! The vertical edge of the
box is at an Eb/No of 0.69, the lower limit of the digital transmission we derived
earlier. No meaningful transmission can take place with an Eb/No that low; the
channel capacity falls to zero.

� This graph shows the BER we can expect in the face of various Eb/No values in
the channel. Adjustments can be made. If the channel has a fixed No value that
cannot be altered, an engineer can only try to increase Eb, perhaps by increasing
the signal power pumped into the channel.

M1n 2 �  A �  sin 1v �  t �  un 2

M1n 2 �  A �  sin 1vn �  t �  u 2

234 CHAPTER NINE

09_200256_CH09/Bergren   4/17/03  11:24 AM  Page 234



� Conversely, if an engineer needs a specific BER (or lower) to make a system work,
this specifies the minimum Eb/No the channel must have. In practice, a perfect
realization of the theoretical Eb/No curve cannot be realized and an engineer
should condition the channel to an Eb/No higher than that theoretically required.

Figure 9-6 shows two BER curves from two different but similar modulation
schemes. These curves show that some modulation schemes are more efficient than oth-
ers. In fact, the entire game of building modulation schemes is an effort to try to
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FIGURE 9-5 S/N effect: As the power per bit (Eb/No) goes up, the bit error
rate (BER) goes down.
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FIGURE 9-6 A better modulator (the inner curve) can approach the Shannon
limit more closely.
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approach the Shannon limit. As might be expected, more efficient modulators are more
expensive. Most people settle for wasting bandwidth rather than paying for a more
expensive modulator.

COMPLICATED MODULATORS

These previous examples are very rudimentary modulation schemes. Often, in modern
modulation methods, more than one carrier parameter is modulated at the same time.
Let’s also introduce here the concept of a symbol. A symbol is simply a multiple bit
number used for modulation. A byte could be an 8-bit symbol used in ASK to set the
amplitude to one of 256 different levels. The process of modulating the carrier by a sym-
bol changes the character of the carrier waveforms.

The receiver demodulates the data and makes an attempt to determine the character
of the waveform in order to classify which symbol it represents. The demodulator in the
receiver serves to quantify the received waveform into a symbol space. Visualize the
symbol space as a multidimensional data space within which the received signal is mov-
ing. As the amplitude, frequency, and phase of the received signal change, the signal
moves around in the receiver’s symbol space. If, for instance, 256 different symbols are
defined, then 256 different points are in the symbol space where these symbols reside.
If the received signal is crossing one of these 256 points when the data clock ticks, the
received symbol associated with that point is chosen as the received symbol, and the
data (8 bits) represented by that symbol is dumped into the receiver’s output.

Let’s look at a simplified example. Suppose we are modulating both amplitude and
phase with one bit each. Four different symbols (00, 01, 10, and 11) would be used and
the symbol space might look like Figure 9-7.
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FIGURE 9-7 A graph of a simple symbol space
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When the data clock ticks, we sample the position of the received signal in symbol
space. Suppose we receive a symbol whose amplitude is a little low but has a very clear
phase. It might map into the following point shown in Figure 9-8.

To decide on which symbol is received, we put a decision grid into symbol space, as
shown in Figure 9-9. The decision grid makes the decision quickly, and the symbol is
resolved to be 01.

It’s clear that we do not want symbols to be too close together in symbol space.
Modulation schemes are designed to minimize the probability that symbols will be too
close or that the peculiarities of the channel will cause one symbol to be mistaken for
another.
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FIGURE 9-8 Classifying a recently received symbol that is shown as “?”
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FIGURE 9-9 A hard decision grid classifies the received symbol as 01.
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A more complex example of this sort of symbol space is 64 Quadrature Amplitude
Modulation (QAM), where 8 bits of data are modulated at the same time. Symbol space
for 64 QAM might have a square structure as shown in Figure 9-10.

The incoming symbol data traces a wild pattern through the 8 � 8 grid of dots. To a
certain extent, because the symbol data tries to stick to the grid points, the grid has open
areas where the data does not traverse. These open areas look like eyes and are the sub-
ject of the next discussion.

Error Control
Designers of big symbol spaces have to worry about what’s called the open eye.
Remember, when the data clock ticks in the receiver, the received signal should be right
on top of a symbol point. To get there from any other symbol point, it should travel
along a well-known route through symbol space (governed by the shape of the carrier
signal). With a noiseless channel, the trail of the received signal would trace a very nice
set of geometric paths and lots of empty space would be showing on the symbol space,
places where the signal never traverses. These empty spaces are what engineers look for
when they are trying to find the open eye. These spaces are called that because they are
generally formed by two sine waves and have the shape shown in Figure 9-11.

A good engineer can put the communication waveform on an oscilloscope (or other
instrument), look at the eye pattern, and determine the health of the physical layer of
the communication network.
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FIGURE 9-10 A symbol space for 64 QAM
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In the same manner, engineers can plot the recent data points to see how tightly they
cluster around the symbol points. A healthy communication link will have a very tight
clustering around the symbol points, and a sickly system will have them spread out in
a sloppy manner.

These are all ways to try to keep the physical link healthy, but steps can be taken in
the design of the communication link that will make it more robust. Many different
ways are available for looking at what these techniques represent. I prefer to think of
them all the same way: sending the data more than once.

In a situation where noise might ruin data inside the channel, the receiver is more
likely to get the data if it’s sent more than once. If the receiver is smart enough to rec-
ognize when data is corrupt, it can just wait for the second helping of the same data.
This becomes particularly important for robots in remote locations.

Sending duplicate data can be done in many different ways. Clearly, it’s possible to
just send the data twice or three times. But believe it or not, it’s possible to send the data
1.5 times, 1.1 times, or even 1.01 times.

Within certain bounds, robot designers can choose among communication protocol
codes that enable them to pick the amount of redundancy built into the communication
link. Since redundant data consumes bandwidth, this allows the designers to decide how
much of the bandwidth is wasted. Sending extra data effectively lowers the BER, since
errors are corrected at the receiver. Getting a lower BER is almost the equivalent of hav-
ing a better Eb/No. Thus, designers can say they get coding gain out of different com-
munication protocol codes. This coding gain can actually be realized since the coding
gain can be subtracted off the Eb/No in the actual channel to get the same BER in a
given situation. Add coding gain, decrease the Eb/No gain, and come out even. In prac-
tice, however, most engineers take the coding gain on top of the existing Eb/No and
realize their profit as a lower BER.
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FIGURE 9-11 An open-eye diagram showing received signal traces crossing
two symbol space X’s
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This happens in satellite communications all the time. In fact, most satellite com-
munication links are designed and specified with the coding gain built right into the
communication protocol. Since many of the codes have parametric options, it is possi-
ble for the operator of a satcom link to pick a code on the fly that matches the quality
of the channel. If the satcom link has a low No, then little coding gain may be needed
and the data rate can go up. If the satellite link has a high No, then a stronger coding
gain may be needed to maintain the quality of the data at the expense of a lower
data rate.

ERROR DISTRIBUTION

Robot designers must also take a very careful look at the channel. It’s one thing to pre-
dict the BER from the modulation method and coding, but it does no good at all if
sunspots wreck the transmission for minutes or seconds at a time. Error rates are con-
catenated; all the links in the communication chain must be functioning at the same
time. An error in any one link may, or may not, be corrected in another link down the
chain.

In addition, noise is unpredictable. That’s why they call it noise in the first place.
Granted, it has certain mathematical properties that are dependable in the average, but
random events can lead to a burst of errors that may not be caught by the coding scheme
chosen. We must look at the density and distribution of errors in the channel, in addi-
tion to the error rate.

One thing further must be said about the distribution of errors. Some coding schemes
(like Viterbi, which we’ll get to soon) gather up errors all together in a net and correct
them all at once. The problem is, if something goes wrong and they cannot all be cor-
rected, the net rips and a local flood of errors happens that would not have occurred nat-
urally in such a manner. This type of situation is actually caused by the error-correction
coding scheme. The system must be prepared to survive such an event. We’ve probably
all seen such error bursts in the middle of soccer games from overseas. The game goes
along fine until there’s a massive burst of black and green blocks on the screen. We’ll
see why this occurs shortly.

Let’s take a look at some of the coding methods that send duplicate data. The differ-
ent techniques have the same basic purpose: to decrease the error rate by sending some
of the data more than once. The techniques are basically divided into two different meth-
ods. Some communication channels are bidirectional, and many are not. A bidirectional
communication channel enables the retransmission of data by request of the receiver; a
unidirectional communication channel does not.
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BIDIRECTIONAL COMMUNICATION CHANNELS

A bidirectional communication channel enables the receiver to send the transmitter
information about the state of the channel and the integrity of the received data.
Several tools are used in a bidirectional communication channel to help send duplicate
data. These tools are not confined to use in a bidirectional channel, but they can be used
to take maximum advantage of the reverse communications link. In fact, all the tools
used in a unidirectional communication channel will also work in a bidirectional
channel.

BLOCK CHECKSUMS

When the receiver receives data, it must determine, to the extent possible, whether the
channel has changed the data. It does not matter where in the channel the data was
changed. Noise from lightening storms or sunspots may have changed the data en route
or the receiver might have had a temporary power glitch. The only thing that counts is
whether the receiver’s data buffer got the same data that was transmitted. Much like
aspirin bottles that come with a safety seal that ensures protection, data can be wrapped
in a checksum that will guarantee the integrity of the data.

A checksum is a series of data bits that serve to summarize a block of data. The
sender can chop the data stream into a series of blocks that may be many bytes long.
The checksum is computed and appended to the data block before transmission. We’ll
discuss just how checksums are computed later. The receiver knows, by prior arrange-
ment, how the checksum will be computed. The receiver, upon receiving the data block
(and checksum), independently computes the checksum again and compares it to the
received checksum. If the results are different, then a problem exists. If the checksums
are the same, then the data is accepted and the receiver moves on to the next block. But
suppose a problem exists. In this case, several different actions are possible.

Single Error Detection

If the transmitted checksum information has relatively few bytes, it’s possible that an
error can only be detected. There may not be enough information to either correct the
error or to even detect more than one error in the data block. If an error is detected, the
receiver can ask the transmitter to retransmit the block of information. One protocol
used in the retransmission of data is discussed later.
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Multiple Error Detection

If the checksum has enough data in it (and the appropriate mathematical structure), then
it may be possible to detect more than one error in the data block. Note this means that
a weak checksum method (with little data in the checksum) may even fail to detect any
error if more than one error occurs in the data block.

Consider the nature of the communication channel used in the robot. If it is possible
for more than one error to occur at the same time, then try a checksum method capable
of at least detecting multiple errors. It is certainly possible for multiple errors to occur
at the same time in any communications channel. The key question a robot designer
should examine is the likelihood of such an occurrence. Examine the probability of
errors and the distribution of the errors. Assuming the error rates are small and that the
errors occur independently, it’s safe to assume the chance of two simultaneous errors in
a block is roughly the square of the chance of a single error in a block. The robot
designer should compute this dual error rate and determine if it will be an acceptable
error rate if such errors slip through.

Single Error Correction

If the checksum contains sufficient data to not only detect the existence of an error but
correct it as well, then the data can be corrected before the receiver moves on to the next
block of data. No retransmission from the transmitter will be required. It should be
noted that even error correction schemes will occasionally make mistakes. The strength
of the error-correcting code lies in the mathematics of the protocol. Some errors may
not even be detected, some errors may not be correctable, and some errors will be incor-
rectly corrected. When employing such methods, the robot designer must examine these
error rates and compare them to the allowable error rate.

Multiple Error Correction

Some checksums have sufficient information to correct simultaneous errors. All the
same precautions should be taken as outlined previously. Be aware that such strong
checksums often consume a good deal of bandwidth sending extra checksum data; the
checksums may contain many bytes.

Checksums are smaller blocks of data that summarize larger blocks of data. Often
checksums are called cyclic redundancy checks (CRC). The following web sites will
point out a small difference. Certainly, if a checksum contains more data than the block
it summarizes, then it is not of much use. The whole idea is to summarize the block of
transmitted data in a small number of bytes in an effort to be efficient. Often, a check-

242 CHAPTER NINE

09_200256_CH09/Bergren   4/17/03  11:24 AM  Page 242



sum will consist of 1 to 8 bytes of extra information summarizing a block of data that
is between 32 and 1,024 bytes long. These numbers are arbitrary, but common. TCP/IP,
for instance, typically has blocks of data 512 bytes long with checksums that are 2 bytes
long.

Descriptions of the IP checksum method can be found at:

� www.ietf.org/rfc/rfc1071.txt
� www.netfor2.com/checksum.html

Here are descriptions of TCP checksums:

� www.netfor2.com/tcpsum.htm
� http://ethereal.ntop.org/lists/ethereal-users/200012/msg00050.html

An interesting statistical analysis of TCP/IP checksum errors in a real-world appli-
cation can be downloaded from www.acm.org/sigcomm/sigcomm2000/conf/paper/sig-
comm2000-9-1.pdf.

The astute observer will note that a data block of 512 bytes can be filled in 2512�8 dif-
ferent ways. However, a checksum with just 2 bytes can only take on 65,535 (22�8) dif-
ferent checksum values. This means that for each possible checksum value, about 2256

(or about 7.4 x 1019) data blocks will have the very same checksum.
So how do we get away with saying that this sort of checksum is sufficient for an

application? If an error occurs, the erroneous data block just might be identical to one
of the several billion data blocks with the same checksum. The key thing to remember
is that a single error should result in an erroneous data block with only one chance in
65,536 of having the same checksum. If this decrease in the error rate is not good
enough, then design the robot with a stronger checksum, which is perhaps longer.
Certainly, as the mathematical algorithm is chosen for the checksum calculation, make
sure the most common errors all result in a checksum change.

For example, an error in a single bit may be common and should result in a different
checksum. The calculation method for checksums is often described by a polynomial,
a mathematical way to describe the calculations involved in computing a checksum. The
mathematics behind the selection of a good polynomial are beyond the scope of this
book. Fortunately, many standard polynomials (some listed later) exist and we can select
among them without reinventing them.

The following web sites describe using polynomials for the computation of check-
sums:

� www.4d.com/ACIDOC/CMU/CMU79909.HTM
� www.geocities.com/SiliconValley/Pines/6639/docs/crc.html
� www.relisoft.com/Science/CrcMath.html
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� www.relisoft.com/Science/CrcNaive.html
� www.relisoft.com/Science/CrcOptim.html
� www.relisoft.com/Science/source/Crc.zip

PARITY BITS

Let’s look at a simple checksum structure example. Parity bits, as part of a checksum
structure, can simply indicate how many ones are in a byte. Basically, take a byte and
count up the number of ones in the 8 bits. If we are using an even parity scheme, then
the number of ones in the bits (including the parity bit) must be even. For example, if an
even number of ones is in the data byte, then append a ninth parity bit containing a zero
to the byte to keep an even parity. If the number of ones in the byte is odd, then append
a one as the ninth parity bit to attain even parity. If we do this for every byte in the data
block, then single bit errors in any byte will “finger” that byte as bad. We will be able
to detect single bit errors in the data block at the expense of increasing the data by 1/8.

If we also compute the parity for each bit, over the entire data block we will get more
capability. We can, for example, compute the number of ones in the 0 bit position for
the entire data block and append a column parity byte at the end of the data block con-
taining a single 9-bit number. The column parity byte will contain the parity computed
for the 0th, first, second, . . . eighth, and ninth columns of bits in the data block. Then,
if a single bit is corrupted in the data block, that byte’s parity bit will signal which byte
is erroneous, and the column parity byte will tell us which bit is wrong in that byte. This
will allow us to correct single bit errors in a data block by duplicating and expanding
the data block by about 1/8. It’s not a very strong code; better ones can be created.

It is easy to make up our own code, but we must be sure it matches the requirements
of the robot’s operating environment. The strength of the code should match the error
rates, the error distribution, and the tolerance the robot has for errors.

REED-SOLOMON CHECKSUMS

One of the most often used checksum calculations is the Reed-Solomon (RS) code. This
type of code is capable of correcting multiple errors in a block of data. The reason this
is useful will be outlined shortly. RS coding also expands the data block by appending
parity bytes.

One popular RS code is RS(255,233), which expands a 233-byte data block to 256
bytes by appending 32 bytes of parity checksums, an expansion of the data block by a
factor of about 14 percent. The RS(255,233) polynomial enables up to 16 different bytes
to be corrected at the same time.
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Another popular RS code is used in satellite video transmissions. The Digital Video
Broadcast-Satellite (DVB-S) standard has been standardized on MPEG2 video transmis-
sion using, among other codes, RS(204,188). This code appends 16 parity checksum bytes
to a data block of 188 bytes for a code expansion of about 8.5 percent. The RS(204,188)
polynomial enables up to eight different bytes to be corrected at the same time.

The following web sites and PDF file outline RS encoding and decoding:

� www.4i2i.com/reed_solomon_codes.htm
� www.siam.org/siamnews/mtc/mtc193.htm
� http://web.usna.navy.mil/�wdj/reed-sol.htm
� http://reedsolomon.tripod.com/rs-encode.c
� www.elektrobit.co.uk/pdf/reedsolomon.pdf

For fun, go to www.mat.dtu.dk/people/T.Hoeholdt/DVD/index.html, which shows RS
corrections in real time in a very graphic manner. The web page displays an image, shows
graphically the amount of redundant data, enables us to introduce errors in the graphics
image using the mouse, and corrects the errors before our eyes. If too many errors are
introduced, the errors cannot be corrected. This illustrates the limits of block encoding.

RETRANSMISSION

If an error is detected, the receiver can send a NACK, or Negative Acknowledge, back
to the transmitter. This NACK message will request the retransmission of the faulty data
block. Some bidirectional communication protocols call for the receiver to transmit an
acknowledge (ACK) message to acknowledge the reception of every perfectly good data
block. If the communication channel imposes a significant delay on transmissions (such
as what might occur to a remote space probe’s robot), then sending an ACK (or NACK)
message for every data block is impractical. If the transmission protocol enables the
transmitter to transmit multiple blocks of data without receiving messages from the
receiver, then the transmitter must append an identifier to each data block sent.

The identifier is often just a sequential count sufficient to distinguish each data block
from its adjacent neighbors. The receiver, upon identifying a bad checksum, appends
the identifier of the bad block to the NACK message for that block. When the trans-
mitter receives the NACK message, it reassembles the data block that corresponds to
the identifier and retransmits it. The receiver must compute the checksum of the
received retransmission and accept the data block. Note that this will require both the
receiver and the transmitter to buffer (keep) multiple blocks of data in memory during
the transmission cycle.
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Be aware that certain communication protocols cannot use retransmission as a tool
to decrease errors. Video and audio links, for example, cannot use retransmission. Video
and audio streams cannot pause while the data is retransmitted because the screen will
go blank. These data streams must be continuously available at the transmitter and rely
entirely on unidirectional data transmission (which we’ll discuss shortly).

CHANNEL TUNING

A bidirectional communications link can be optimized in real time by sending control
information in both directions. Channels can change over time and sometimes need tun-
ing to work properly. Some communication protocols have built-in control signals and
specified tuning algorithms that keep the communication link healthy and robust. The
following methods can be used to tune a system:

� Power A data communication link will often work better if more power is used
to transmit each bit. The Eb/No ratio is directly affected. The receiver can meas-
ure the signal strength it is receiving from the transmitter. If it determines the sig-
nal is too weak, the receiver can send a request to the transmitter to boost its power
when transmitting. In the same manner, the transmitter can request the receiver to
boost its transmitting power. This technique can be used in all bidirectional com-
munication links as long as the power stays within limits.
What can be done with power control, however, is limited. Too much power can
pollute the spectrum and make it impossible for any communication link to func-
tion properly. A properly constructed power control protocol for a communication
link often includes a limit on the power that is received. If a receiver senses too
much signal strength coming in from a transmitter, it can request the transmitter
to decrease the signal strength to an acceptable level. After all, the signal for one
receiver may just be the noise for another receiver. Some cooperation is therefore
required.
The Code Division Multiple Access (CDMA) protocol uses just such a power con-
trol protocol to optimize the communication link. This technique is especially use-
ful in situations where a cellular phone is moving from one area to another in a
car. The cellular base stations used by the phone change as the phone moves. To
make sure the phone is well behaved and doesn’t disturb the neighboring phones,
power control is used. Here are some web sites and PDF files describing the tech-
nique further:
� www.comsoc.org/livepubs/surveys/public/2000/dec/dukic.html
� www.commsdesign.com/main/2000/09 /0009feat3.htm
� http://vig.pearsoned.com/samplechapter/0130871125.pdf
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� Code changes If a communication link begins to deteriorate, another technique
that can be used is a coding change. By prior agreement, the receiver and trans-
mitter can pause and change coding methods. Stronger error correction codes
translate directly to a coding gain that can be added to the Eb/No. As we discussed
before, this generally means that an extra amount of redundant data will be sent
in one form or another. Since extra data will be sent over the channel, and since
the channel’s Eb/No value is already marginal, it makes sense to move to a lower
bandwidth for the data transmission. If less actual data is sent, more redundant
data can be appended, and the channel power per bit remains the same.
A specific example of this can be found in MPEG video transmissions. Most
MPEG transmissions are unidirectional, but some video links do have reverse con-
trol channels of a much lower bandwidth. Although video may be sent over uni-
directional satellite links, the reverse control channel can be established over the
phone.
At the transmitter site, an MPEG compressor takes a video signal and compresses
it using the MPEG algorithms. The compressor has a choice of several compres-
sion algorithms that can squeeze the video picture down to smaller and smaller
amounts of data (at the cost of picture quality). The compressor then encodes the
MPEG data for transmission through the channel using Viterbi and RS codes that
append redundant data. The receiver uses the Viterbi and RS codes to eliminate
errors and then decompresses the video picture.
If the receiver cannot correct all the errors, the picture will begin to break up. The
receiver can use the reverse control link to request a better channel coding method.
The compressor at the transmitter site then uses a stronger compression algorithm
to reduce the amount of data sent and chooses a stronger Viterbi and RS code com-
bination. The channel coding increases the data back to the original amount again.
The receiver will then be able to correct all the errors and present a clean picture.
The video image may not be as good as before (because of the extra compression),
but at least the images are going through.

UNIDIRECTIONAL COMMUNICATION CHANNELS

We’ve already discussed or mentioned many of the methods used to decrease errors in
communication channels. Except for retransmission requests, which are impossible in
a unidirectional communication channel, most of the same techniques can be used.
We’ll discuss a few more of the protocols used, but we won’t go into great depth.
However, to adequately specify a communications link for a robot, we must understand
the options.
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We need to realize that a unidirectional communications link can only be used suc-
cessfully if the following two conditions are met:

� The receiver’s target error rate must be set so it is acceptable given the specifica-
tions for operation. We can pretty well determine ahead of time what error rate
will be acceptable for operation of the robot.

� The data received at the receiver must be of sufficient quantity and quality to keep
the data rate high enough and the receiver’s error rate below the acceptable target
value.

To accomplish the second goal, we should review the tools available. In the case of
bidirectional communications, we already talked about block encoding, channel tuning,
and retransmission. Since both channel tuning and retransmission are impossible with-
out a reverse communications channel, we should examine encoding further.

We’ve already discussed block encoding and checksums at some length. Parity bits
and RS encoding are tools that can be used in a unidirectional communications link.
Often, the name given to unidirectional error correction methods is forward error cor-
rection (FEC). It has this name because all error correction information moves forward;
no reverse communication link exists. Here are a few sites about FEC:

� www.its.bldrdoc.gov/fs-1037/dir-016/_2298.htm
� http://research.compaq.com/SRC/articles/199711/error_correction.html
� www.eccpage.com

Two other tools have proven valuable, namely convolution codes and concatenated
codes.

CONCATENATED CODES

The general idea behind concatenated codes is to herd randomly spaced errors into one
spot where we can dispatch them efficiently and reliably. That may be a gross oversim-
plification, but it is the way I view the technique (see Figure 9-12).

Figure 9-12 shows the typical arrangement for a communications system using con-
catenated codes. MPEG video signal data is broadcast in DVB format over satellites
using this type of concatenated coding. We’ll discuss MPEG compression and the DVB
format later. The description of each block within the figure is as follows:

� MPEG compressor Broadcast video signals, generated by a video camera, are
accepted by the input to the MPEG compressor. The compressor has several dig-
ital signal processing (DSP) computation engines that compress the signal. We
will discuss data compression later.
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FIGURE 9-12 Satellite video broadcasting: concatenated coding showing
the introduction and correction of errors
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� RS encoder The compressed signal is sent into an RS encoder that adds check-
sum data as discussed previously.

� Interleaver An interleaver is a data shuffler that takes adjacent bytes and sepa-
rates them. It does not expand the data block it receives, but it rearranges the order
of the bytes in the data block. The goal of an interleaver is to arrange the data so
the deinterleaver can separate adjacent errors, making them stand alone. We’ll see
how that works later.

� Convolutional codes The convolutional encoder effectively adds extra data to
each data symbol. A couple of different types of convolutional codes exist, the
most popular of which are Viterbi and Turbo codes. These codes tend to expand
the data more than the RS encoding does, except the data is added almost byte by
byte. We’ll discuss these codes shortly.

� Modulator As discussed previously, the data modulator alters carrier wave-
forms according to the data transmitted. Even after the data is modulated once,
the resulting waveform may be modulated a second time to step it up in frequency
for specific communication frequency bands.

� Channel The data communications channel is taken to be a standard commu-
nications link (such as a satellite link) with errors added as the result of interfer-
ence and noise.

� Demodulator A demodulator basically has the reverse function of a modulator.
Often, the frequency will be stepped back down once with a first demodulator
stage. The data will then be separated from the carrier wave in the final demodu-
lation step. The demodulator data output should be identical to the modulator’s
data input, save for the errors introduced by the channel noise.

� Convolutional decoder The convolutional decoder effectively strips off the
extra data the convolutional encoder added to each data symbol. The decoder must
match the convolutional encoder. The output of the decoder should be identical to
the input to the convolutional encoder, save for the errors introduced by the chan-
nel noise.

� Deinterleaver The deinterleaver is a data shuffler that takes adjacent bytes and
separates them. It does not expand the data block it receives, but it rearranges the
order of the bytes in the data block. The goal of a deinterleaver is to separate adja-
cent errors (bursts of errors) coming out of the decoder. This makes each bit error
stand alone. We’ll see how that works later.

� RS decoder The RS decoder, as discussed previously, strips off the checksum
data and corrects errors as discussed previously. The output of the RS decoder,
assuming all channel errors are corrected, is identical to the data output from the
MPEG compressor.
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� MPEG decompressor The decompressor has a DSP compute engine that
decompresses the MPEG video data. The output of the decompressor is a broad-
cast video signal suitable for viewing.

Figure 9-12 shows the distribution of errors in an MPEG satellite transmission and
helps explain why concatenated codes work so well. The figure shows the errors pres-
ent in the DVB communications link. Errors are shown as tic marks on the time graphs
to approximate the distribution over time. This shows the relative action of the various
concatenated coding blocks. The following describes the action of each block in the fig-
ure with concentration on the handling of errors:

� MPEG compressor
� RS encoder
� Interleaver
� Convolutional codes
� Modulator

With luck and proper design, none of these five preceding blocks adds errors to the
data. The modulator is the one block capable of introducing partial errors in the sense
that it provides D/A functions. No analog signal is ever perfect. A good modulator will
not add any significant errors.

Channel

The data communications channel is taken to be a standard communications link with
errors added as the result of interference and noise. Data errors might occur at random
intervals, or in concentrated bursts. Such errors are as follows:

� Random errors Random errors are the easiest to fix. The existing concatenated
codes are well suited to fixing random errors.

� Bursts of errors The existing concatenated codes are reasonably well suited to
fixing bursts of errors. The convolutional codes tend to concentrate errors into short
bursts anyway. Naturally, if too many errors occur, they cannot all be corrected.

� Regularly space errors The existing concatenated codes have the most trouble
with errors that occur at regular intervals. The RS block codes, in particular, are
weakest at correcting such errors. This is not to say that these codes will not take
care of errors distributed in such a manner. Just be careful designing a communi-
cation link if the noise is organized in some way.

� Demodulator By and large, a demodulator will not add much noise to the sig-
nals in the channel. It will add a small amount, but by the time a demodulator is
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finished with its job, all the channel noise has been turned into digitized noise,
data with some errors in it. The random noise from the channel is shown
unchanged after demodulation.

� Convolutional decoder The convolutional decoder tends to gather errors
together and correct them. When it fails, it lets through a burst of errors. By and
large, it tends to gather errors together in time. This is a most useful function
because it will make the output of the deinterleaver very predictable. The noise is
shown gathered into bursts after the convolutional decoder.

� Deinterleaver The deinterleaver takes the bursts of errors that come out of the
convolutional decoder and spreads them out evenly in time. This sets them all up
individually to be picked off by the RS decoder and corrected. The noise is shown
spread out into a regular pattern after the deinterleaver.

� RS decoder The RS decoder, as discussed previously, is capable of correcting
multiple byte errors in a block of data. Most concatenated codes are constructed
in such a way that the burst of errors coming out of the convolutional decoder does
not, in general, contain more bytes than the RS decoder is capable of correcting.
The noise is shown completely corrected after the RS decoder. This finished the
stated goal of showing how the concatenated codes work. In practice, of course,
some noise always gets through.

� MPEG decompressor The MPEG decompressor does not add any errors to the
data stream.

DVB concatenated codes are covered further at www.csee.wvu.edu/�mvalenti/
documents/milcom00.ppt. Such codes are used in the transmission of video data over
satellite links.

CONVOLUTIONAL CODES

Convolutional codes increase the amount of data redundancy in a data stream. The
decoders have memory within them and delay the output of data for a short while.
Redundant data can be added in a couple of different ways.

Expanding the Bandwidth

Certainly, redundant data can simply be added to the existing data. If this is done, then
extra bandwidth is required to transmit the extra data. We can illustrate this describing
Viterbi codes.

Viterbi Encoder (in the Transmitter) When we can expand the bandwidth, Viterbi
codes specify a state machine that has the unexpanded data as an input. The state
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machine creates the output data. The state machine changes states depending on the
flow of input data bits. Each one and zero from the unexpanded data does two things:

� Changes states The state machine changes state for each one and zero coming
in from the unexpanded data input.

� Outputs data Each time the state machine receives an input bit and changes
state, it outputs some data. In general, more bits are output than are input, so the
Viterbi encoder expands the data.

Since more than just two states exist in the Viterbi state machine, each state change
excludes some states in favor of the two states that are the only possible results of the
change. If, for example, the state machine has four states, then a one or a zero can only
make the state machine change to one of two different states. The other two states are
prohibited changes. This is the key to how the Viterbi decoder corrects errors.

Viterbi Decoder It’s a great oversimplification, but here’s a brief explanation of how
the Viterbi decoder corrects errors. The Viterbi decoder knows a priori how the Viterbi
encoder functions. Since the decoder knows the behavior of the encoder, it can detect
suspicious data altered by the noise in the channel. The random changes caused by the
noise cannot fully mimic the activity of the encoder. Thus, the decoder can detect signs
of tampering.

The decoder accepts input bits coming directly out of the channel through the demod-
ulator. The decoder also has a state machine that changes states based on the received
data bits. As the expanded input data is received, the decoder state machine does two
things:

� Changes state As expanded data bits are received from the demodulator, they
are decoded to determine the next state of the decoder state machine. The history
of the state changes is accumulated back a few cycles.

� Outputs data As the decoder state machine changes states, it triggers an exam-
ination of the historical state change data. If the historical data all makes sense,
then the decoder outputs the unexpanded data that is stored in the historical data.
In general, the output has fewer bits than the input. This is how the Viterbi decoder
retrieves the original unexpanded data.

The decoder does not output any unexpanded data until it is satisfied it has combed
errors out of the input stream. It will save up data until this is the case. The decoder
looks back over the recent history of state changes to see if those changes make sense.
If the history looks suspicious, the Viterbi decoder considers the fact that one or more
of the received data bits may have been wrong. One by one, the decoder looks into
recent history, examines each recent input bit that was received, and considers what
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would happen if that bit were in error. The decoder determines what the hypothetical
history would have looked like in this case. If the hypothetical history looks much bet-
ter, the decoder gives weight to the fact that the input bit may have been in error. Once
the decoder finds the most satisfactory hypothetical history, it outputs that hypotheti-
cal data as the real, corrected, unexpanded data.

As we mentioned before, if the Viterbi decoder cannot correct all the errors, it at least
collects them all in one place. Because it stores up the data history before deciding and
making an output, it will output all the recent errors in a burst as it fails in its task. Even
in failure, this is a key to success. The deinterleaver spreads out the burst of errors so
the RS codes can correct them. Picture the Viterbi decoder giving up, but sweeping its
mistakes into one corner and pointing them out to the RS decoder so they can be cleaned
up there instead.

As a reminder, this version of Viterbi coding pertains to the case where the trans-
mitting Viterbi encoder can expand the data before transmission. The encoder thus
organizes the unexpanded data into expanded data that has some recognizable patterns
in it. These recognizable data patterns are what the decoder looks at to determine if the
received, expanded data is suspicious. The metric the decoder uses to examine data is
the Hamming distance (the total number of bit differences) between the actual received
data and the hypothetical received data.

The Viterbi algorithm comes built in to many standard communication systems. The
single most important thing to keep in mind when using the Viterbi algorithm is that it
comes in varying degrees of strength based on certain parameters. If the parameters can
be varied, the stronger codes will tend to expand the data more.

The following web sites describe Viterbi coding further:

� http://pw1.netcom.com/�chip.f/viterbi/tutorial.html (follow the links)
� http://ece-classweb.ucsd.edu/Archive/winter02/ece260b/Labs/Project_2/easy_

viterbi.htm
� www.cim.mcgill.ca/�latorres/Viterbi/va_main.html

Bandwidth Limited

Sometimes there is no extra bandwidth to work with, and we cannot use Viterbi coding
to expand the data at all. If we want to make some of the transmitted data redundant,
then we must throw away some bandwidth. A bit less of the original data is transmitted,
but the bandwidth is filled up with some redundant data. The overall bandwidth remains
unchanged.

The operator of the communication link must decide how much data bandwidth to
give up. Trellis coding and Viterbi decoding can be used. These codes expand the data
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by a definitive amount based on the coding strength. The operator of the communica-
tion link can select a code and decrease the input data by just the right amount so the
coding expansion fills up the channel bandwidth.

Remember, the goal of this type of encoding is to organize the input data with rec-
ognizable patterns so the decoder can determine if the channel noise has altered it. The
technique generally used to accomplish this is to sacrifice some of the symbol positions
in the symbol constellation.

Suppose, for example, that the symbol constellation looks like Figure 9-10 showing
64 QAM, which we’ve seen before. In the case of QAM that is not encoded, all transi-
tions are possible. The signal can move from any X mark to any other X mark to signal
the transmission of 6 more bits (26 � 64). But it is possible to restrict the possible tran-
sitions in a recognizable way. If, for instance, it was only possible to jump from one X
mark to just 32 other X marks, then only 5 bits would be transmitted by the transition
(25 � 32). The data rate would be cut in half, but the signal would have to follow a dis-
tinct set of rules that would be known to the decoder. The decoder would then be in a
better position to detect errors by the means, outlined earlier.

One other technique for restricting the transitions the symbols can make is to liter-
ally provide extra symbol positions. Consider, for the moment, a 16 QAM system with
the symbol constellation shown in Figure 9-13.

It’s possible to double the number of symbol positions to make a 32 QAM system
and to double them again to make a 64 QAM system. The symbols in the 32 QAM sys-
tem can be arranged in any geometric arrangement but are best packed into an approx-
imation of a circle (see Figure 9-14).
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If the 16 QAM system is still going to transmit the equivalent of 4 bits per symbol,
the encoder can pack in redundant data by restricting the 32 or 64 different symbol loca-
tions that will be permitted transitions. This effectively puts an identifiable pattern into
the data without expanding the bandwidth. The Viterbi decoder can still be used, but it
uses the distance between symbols as a metric as it looks for suspicious data transitions.

Turbo Coding

Some advances have been made since Viterbi brought out his codes in the late ‘60s.
Viterbi decoder complexity tends to grow exponentially for stronger coding gains.
Classical turbo codes have been out for a while, with much better results, but the clas-
sical turbo codes have some limits, reaching a limit short of the Shannon capacity limit.
In addition, the classical turbo codes are complex to compute and use expensive hard-
ware. Turbo product coding (an improvement on classic turbo codes), is more promis-
ing. The technique allows a determined communications link designer to get arbitrarily
close to Shannon’s capacity limit, sending as much data through a channel as the S/N
ratio will allow. A good deal of computation is required, but the computations tend to
be iterative and lend themselves to an implementation in silicon. Performance is largely
bounded by memory limits.

Turbo product codes replace the entire RS, Viterbi concatenated chain. The per-
formance delivered can bring the BER curve within an arbitrarily small number of dB
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of the Shannon limit. The coding is similar to the block coding of RS, with data and
checksum bytes, but it has several differences.

First and foremost, whereas RS has a row of data and checksum bytes, the turbo prod-
uct codes have a three-dimensional structure. Checksums are computed for all three
dimensions for the data: x, y, and z. In this way, the original data is given error-
correcting checksums in multiple directions. The decoder has a relatively simple com-
pute engine. The decoder works on one checksum at a time, doing x, y, and z vector
checksums in separate calculations. Every time the decoder compute engine makes cor-
rections on a vector, it changes the results in the other two dimensions. Once the decoder
has been used on all the vectors in all three dimensions, the entire process can start over.
The decoder can process the data as many times as needed to make the data as perfect
as possible. The more times the decoder is used, the better the results. If the data is
known to have many noise errors, the decoder can be used several times. If the data is
known to be fairly clean, the decoder can be used one or two times. Sufficient infor-
mation is built into the originally transmitted data so the decoder knows when to stop
iterating through the received data.

The following web site and PDF files have further descriptions of turbo codes:

� www-ext.crc.ca/fec/Compare_Ref2.pdf
� www.ee.vt.edu/�yufei/turbo.html

INTERLEAVER

Interleaving is a way of spreading out errors. Often, an error-correcting scheme will
break down if the errors occur in a regular pattern. Viterbi codes, for instance, will
gather errors into concentrated bursts. An interleaver takes adjacent data and moves
them apart, much like a deck of cards is shuffled. The data is not expanded, just
rearranged. The encoder can interleave the data before transmission, and the decoder
can deinterleave the data on reception. Interleaving can be done in many different ways,
each of which conveys specific advantages and disadvantages.

Here’s the bottom line on interleaving. In general, if interleaving is used within a stan-
dard communications link protocol, all the options are already specified. In this case,
no choices will affect the performance of the communications link. More information
can be found at these sources

� www.es.lth.se/home/jht/interleaverdownload.html
� www.comblock.com/download/com1016.pdf
� www.cs.ucl.ac.uk/staff/jon/talks/rtpi/sld001.htm

Here interleaving is used with compression, not coding. See slides 3, 4, and 5.
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Shared Access
Communication links are often used by multiple communications entities: sources and
destinations. Sometimes the entities are in separate computers; sometimes they are in
separate processes in the same computer. If a link has multiple sources and destinations,
they have to contend for the use of the communications link. Often, the physical layer
will not allow them all to use the communications link at the same time. The designer
of the communications link must devise a strategy that enables each communications
entity the maximum amount of access to the corresponding communications entity on
the other end of the link. Given that a limited amount of bandwidth exists in the com-
munications link, the designers have to watch out for many different requirements.

BANDWIDTH

Every communication session between entities has different bandwidth requirements.
The requirement for bandwidth may change over time. Some sessions will require a
very steady bandwidth, and some sessions will suddenly require a large percentage of
the available bandwidth. These sessions will present various types of demands on the
bandwidth.

Raw Bandwidth

The different communications sessions may all have different requirements for
bandwidth.

Changes in Bandwidth

Some communication sessions have bandwidth requirements that change unpredictably.
On a shared environment, it often takes time to negotiate for more (or less) bandwidth.
It takes time to conclude such negotiations, which time must be taken into account by
the designer.

Further, the different communication sessions may all have changing requirements
for bandwidth. This presents a classical problem of how to pack all the competing
requirements into the available bandwidth. Even if enough bandwidth exists to satisfy
the arithmetic total of all the required bandwidths, it still may not be possible to pack
them together inside the channel. This problem is reduced to a classic mathematical
packing problem. This problem is akin to trying to pack different-sized blocks inside a
box. There’s almost no way to do it without wasting space. Even if the blocks could all
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fit at once, there may not be enough time to determine the proper solution. The net result
is that full bandwidth is rarely achieved in these circumstances. For more info, access
the following sites:

� http://eng.murdoch.edu.au/EngModules/m108demo/Section01/
Section0102c.html

� www.nist.gov/dads/HTML/binpacking.html
� http://mathworld.wolfram.com/Bin-PackingProblem.html

It should also be noted that some receivers have receiving buffers that must not over-
flow or underflow. This is true of MPEG transmission, so be sure to read the following
section. It’s possible for the channel bandwidth to vary because of errors. This presents
much the same problem as the varying requirements. Sometimes errors must just be
accepted.

Guaranteed Bandwidth

Some communication links require a guaranteed bandwidth. MPEG video data streams
coming back from the robot would, in general, require constant bandwidth. Such band-
width would have to be reserved in advance, or at least not be subject to repeated rene-
gotiation.

Reverse Channel Bandwidth

Bandwidth is often thought of as a one-way parameter. The truth is, if the channel is
bidirectional, then the bandwidth must be sufficient in both directions. This can greatly
complicate systems where bandwidth is arranged at the spur of the moment.

DELAYS

Several types of delays can disrupt a communications link. All communications links
have delay. Even at the speed of light, data can take microseconds to cross a county.
Most electrical signals move far slower than that. Electronic boards for communication
have significant processing time, which will delay data. If real-time control loops
depend on a communication path, then these delays must be calculated into the design
of the system.

In some systems, bandwidth is relinquished when it is not needed. Further, when
bandwidth is needed, it must be requested and granted. The delay in regaining the rights
to the communication channel must be added to the communication delay to determine
the worst-case delay.
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PRIVACY

We will discuss security and privacy shortly. The only reason to mention privacy here
is that shared communication channels carry an extra risk of eavesdropping. This is
especially true if all users have the option of seeing all the traffic. TCP/IP systems often
have this limitation.

SHARED ACCESS ENVIRONMENT

A system in which multiple entities share the communications link can be designed in
many ways. Sometimes the very nature of the communications environment dictates the
methods used. Here are a couple of considerations a robot designer should take into
account when picking a communications system that will support multiple entities that
share access to the channel.

Closed System

If access to the communications system is restricted, then the designer can generally
count on uniformity of response. The entire system should behave according to the
architecture and protocols envisioned. If the communication link must be shared with
unknown communication entities, then all sorts of problems can arise.

Load Limits

The total amount of communication traffic that a link will bear is often determined by
both the protocol and the users’ actions on the link. It is not unusual for a communica-
tion link to top out at a fraction of the raw bit speed of the link.

Cooperative Users

If the communication entities cooperate, then the usable bandwidth of the communica-
tion link can be increased. If the communication entities can be synchronized, then they
can time-share a communication link fairly efficiently.

TYPES OF SHARED ACCESS

As we mentioned before, cooperation between communication entities that share a com-
munication link is beneficial. Here are a couple of specific types of shared access
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arrangements that are quite general. These same types of shared access arrangements
are used in many different communication standards. If a communication system is
functionally identical to these systems, then the math pencils out the same way. The lim-
its on effective bandwidth are very real.

TIME DIVISION SYSTEMS

Shared access to communications link can be accomplished by dividing the like by time
division, frequency division or code division.

Aloha System

The Aloha communications system was designed so a sender could simply transmit a
packet on the channel whenever it wanted to. If another sender was sending a packet at
the same time, they would collide and both packets would be lost. As more and more
senders compete for the channel, the system rapidly loads down. The way the math pen-
cils out, only 18 percent of the channel’s raw bandwidth is truly available once the 
system loads down. Normal 10BT LAN systems work like this; collisions ruin the data
packets. As a 10BT LAN starts to load down with more and more users, the overall
effective bandwidth of the 10BT systems is not the raw bit speed of 10 Mbps but 
is closer to 1.8 Mbps. On a 10BT LAN, this limit can only be improved if the users
cooperate.

Slotted Aloha

The Aloha system can be improved if the senders are synchronized. Each sender knows
when the timeslots occur and can only start to transmit at the beginning of a timeslot.
Collisions still occur, but this sort of cooperation between senders increases the effec-
tive throughput of the channel to about 35 percent of its raw bit speed.

Reserved Aloha

If the senders politely reserve timeslots in advance, the effective throughput of the chan-
nel increases yet again. Although some bandwidth is wasted making the reservations,
collisions are largely eliminated and the efficiency can be high. Only the reservation
timeslots are wasted. Reservations can be granted in multiple ways, including round-
robin, priority systems, and random selection. It is up to the robot designer to determine
what sort of “request-grant” system to adopt.
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FREQUENCY DIVISION SYSTEMS

It is certainly possible to put different communication entities on different frequencies
within the allowable communication channel frequencies. Several issues arise, such as
frequency allocation and frequency separation.

Frequency Allocation

All of the same reservation issues of reserving bandwidth are present in frequency divi-
sion systems. If a frequency goes unused, then the bandwidth is wasted. If reservations
are required, then overhead exists for making the reservations.

Frequency Separation

Communication channels on adjacent frequencies must not interfere with one another.
Filters are used to remove adjacent frequencies from a communication band.

Since perfect filters are impossible to make, we must leave extra bandwidth between
frequency bands. It is impossible to pack different frequency bands too close together.
Both the transmitter and receiver run into trouble if they are too close.

A few other problems can crop up when frequency bands are packed close together.

� Distortion The transmitter may have trouble with intermodulation distortion.
Consider the case where two frequencies, f1 and f2, are amplified and up-converted
together. The result is unwanted distortion signals at frequencies (f2 � f1) and (f1
� f2). Here is a PDF file and a few URLs speaking about such distortion:

� www.sinctech.com/pdfs/Intermod.pdf
� www.audiovideo101.com/dictionary/im-distortion.asp
� www.atis.org/tg2k/_intermodulation.html

� ISI If frequencies are too close together, the electronics handling each fre-
quency may have trouble filtering out the adjacent signals. Although frequency
division systems are viable and work fine, time division and code division sys-
tems have stolen the thunder of this technology.

CODE DIVISION SYSTEMS

Code division systems use a form of encryption where each user’s data is invisible to
the other users.
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Code Division Multiple Access (CDMA)

CDMA systems, also known as spread spectrum (SS) systems, generally use a wide
frequency bandwidth. The data for each user is spread across the entire frequency band
using a spreading code. Every user’s communication is broadcast in the band at the
same time, but they do not interfere with one another. Each user gets a unique spread-
ing code that is used to separate users. Because of the nature of the codes, little or no
interference exists between users. Furthermore, no synchronization is required between
the users.

In 1940, Hollywood actress turned inventor Hedy Lamarr copatented a frequency-
hopping device for military use. It’s kind of nice to have her picture in here among all
the men in powdered white wigs (see Figure 9-15). One interesting quote is attributed
to her: “Any girl can be glamorous . . . all she has to do is stand still and look stupid.”
More information on her work can be found at www.inventions.org/culture/female/
lamarr.html and at www.edu-cyberpg.com/Teachers/womenmonth.html#ahedy.

Here’s how the most popular SS systems work. Each user is assigned a coded spread-
ing waveform:

U1code i 2
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Where codei is the user’s unique code that selects the characteristics of the waveform
U(codei). These waveforms are typically a series of pulses that have the following char-
acteristics. Whereas � represents a bit by multiplication (correlation):

unless k � i and the two waveforms are synchronized, in which case

In addition, U(codei) � B is very small for uncorrelated signals (like radio trans-
missions) that may already exist in the channel. This means that SS signals can coexist
(overlay) in the channel with existing communication users.

In some SS protocols, the data is first modulated by the spreading waveform prior to
transmission. Consider the case where the channel is filled with the waveforms of two
users. We can extract a single user in the following way:

where i and k are different and Di is the data from user i.

Similarly, the waveform for user k can be cleanly extracted as well.
On the plus side, SS communications can coexist with existing, uncorrelated com-

munication signals in the channel. This basically allows the channel spectrum to be
reused.

On the minus side, the different codes are not completely orthogonal. The previous
small signal Z is multiplied by the number of other users and can interfere with recep-
tion. This can limit the number of users.

Here are a few PDFs discussing shared access communication links:

� http://courses.cs.vt.edu/�cs5516/spring02/Phy_mac_6.pdf
� www.cse.sc.edu/�srihari/csce516/lecnotes/shared.6.pdf
� http://web.mit.edu/course/16/16 .682/www/lec18.pdf

Channel �  U1codei 2 �  Di �  Z �  Di

Channel � U1codei 2 � Di � U1codei 2 � U1codei 2 � Dk � U1codek 2 � U1codei 2

Channel � U1codei 2 � U1codei 2 � 1Di � U1codei 2 � Dk � U1codek 2 2

Channel �  Di �  U1codei 2 �  Dk �  U1codek 2

U1codei 2 �  U1codei 2 �  1

U1codei 2 �  U1codek 2 �  Z V  1
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Compression
Often, the bandwidth available for digital communication is limited. This may occur for
several different reasons:

� Regulated spectrum The government may regulate access to the spectrum and
make everyone share it.

� Cost It is often too expensive to purchase rights to the needed spectrum.
� Energy As we discussed before, sending bits across a wireless channel literally

requires a sufficiently high Eb/No. In satellite transmission, this fact literally
comes home as satellite batteries and solar panels struggle to provide energy to
each and every bit. Robots in remote locations are often up against this very prob-
lem. Don’t forget one thing though. It takes energy to compress the data in the first
place. The compression process may have to be very energy efficient and the
entire process will have to be analyzed.

Whatever the reason, there is little point in sending useless data across the channel.
Most digital communications can be compressed to a smaller amount of data. Shannon
toyed with this at some length. To test this assertion, pick a few different types of files
on a computer and try to compress them with WinZip.exe, a trademarked program from
WinZip™ Computing, Inc. It’s presently available for trial use at www.winzip.com/
ddchomea.htm.

The following compression rations can often be achieved:

� Standard text files A factor of 6 to 10.
� Program files A factor of 2.
� Video or graphic files A factor of 1.1.

Try compressing these types of files with the WinZip™ utility to see what can be
achieved. If the robot’s digital communications must be compressed prior to transmis-
sion, several options are available. WinZip™ may not be usable on the robot’s computer.
It’s likely that the robot’s operating system software library (or freeware) may already
have compression utilities that can be used. Two basic types of compression are com-
monly used by these programs. These techniques are used in standard compression pro-
grams and can be rewritten to suit the needs of the robot.

Fourier Transforms

Graphics and video transmissions are routinely compressed using Fourier transforms.
In MPEG video compression, the pictures are converted to a series of coefficients that
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are compressed again using run-length compression (described later). Compression
ratios of 50:1 can be achieved. It is not simple to write (from scratch) a program to per-
form this type of compression. Here are some web sites and a PDF discussing image
compression:

� http://it.wce.wwu.edu/jongejan/461/Video.html
� http://arachnid.pepperdine.edu/grosenkrans/compression.htm
� http://poseidon.csd.auth.gr/LAB_PUBLICATIONS/Books/dip_material/

chapter_4/main.htm

Run-Length Compression

One of the oldest, and most intuitive, techniques of compression is simple run-length
compression. Instead of sending, for example, a series of 2,415 zero byes, we can sim-
ply send a block of data that is about 4 bytes long, explaining it represents 2,415 zero
bytes. The protocol is simple and can be written from scratch if need be. The following
URLs explain a few different types of run-length encoding:

� www.rasip.fer.hr/research/compress/algorithms/fund/rl/
� http://datacompression.info/RLE.shtml

Huffman Compression

Huffman compression can be used if the data can be broken up into symbols (like text
bytes). Then all the symbols are reassigned a different code before transmission. The
most often transmitted symbols are assigned short codes. Symbols that are rarely trans-
mitted are assigned longer codes. Run-length coding is also applied. The following web
pages are interesting lectures on data compression in general:

� www.eee.bham.ac.uk/WoolleySI/All7/body0.htm
� www.cc.gatech.edu/�kingd/comp_links.html
� www.eee.bham.ac.uk/WoolleySI/All7/links.htm

Encryption and Security
Instances occur when data must be encrypted before it is transmitted. The physical links
of most communication channels move through areas that are in public. Certainly, all
radio frequency (RF) communications that move through free space can be intercepted,
and phone communications move through common wiring and facilities. We’ve all
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heard of the infamous hackers who eavesdrop and create other problems on the Internet.
We’ll use the term hacker to refer to unauthorized parties who may be up to no good.
Hackers have a variety of motives and any hacker would love to gain control of a robot.

Just like Internet communications, RF transmissions and phone traffic are also sub-
ject to interference by hackers. The transmitted data can be read or altered en route.
Here’s a list of the things that can go wrong when a hacker is involved:

� Denial of service (DoS) If a hacker jams the communication link, commands to
the robot may not get through.

� Eavesdropping Hackers may read the robot’s data and get vital information they
may be able to use.

� Spoofing Hackers may pose as the source or destination communication enti-
ties. The following problems could then arise:

� False commands The robot may receive false commands and execute oper-
ations that could damage the mission.

� False data Data could be falsified or altered. The integrity of scientific stud-
ies and data-gathering missions could be compromised.

� Broken communications If the hacker succeeds in spoofing the other com-
munication entity, the entire communication chain may be interrupted going
forward.

The following web sites are hacker clubs that you can visit at your own peril. Your
computer may be threatened and strong language may be involved. There may, however,
be things to learn. Hackers know more about security than most people. At the very
least, they may scare your socks off:

� www.phrack.org
� www.morehouse.org/hin/

Security and hacker problems can be solved in multiple ways. Several standards have
been set up to encrypt and harden communication links to prevent hackers from inter-
vening. Some of these methods are more effective than others. Most casual hackers are
harmless, but enough determined hackers are out there to crack almost any code. As a
rule of thumb, ask what would happen if a hacker had full access to the communica-
tions link. What’s the worst that could go wrong? If your data is boring or nonvital, then
don’t bother. However, minimal security is often beneficial and does not cost much. But
remember, robots are an attractive technology target. The prospect of hacking into a
robot will wake up even the sleepiest hacker.

In a nutshell, what sorts of fixes are available? Eavesdropping becomes almost a use-
less exercise if the data is completely encrypted. Further, spoofing becomes impossi-
ble if the message has sufficient authentication to verify the sender. Methods to provide
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encryption and authentication are outlined in the following URLs. Many computer soft-
ware libraries contain subroutines to support secure communications. If the data stream
moves too fast for software encryption, hardware chips are available that can encrypt
the information faster. Popular encryption standards are listed at www.cs.auckland
.ac.nz/�pgut001/links/standards.html and include the Data Encryption Standard
(DES), RSA, and Pretty Good Privacy (PGP)™.

DATA ENCRYPTION STANDARD (DES)

DES has won the backing of the government and is present in many commercial trans-
actions today. The calculation methods are fairly straightforward and chipsets are avail-
able for high-speed implementations. Further information on DES can be found at the
following URLs:

� http://axion.physics.ubc.ca/crypt.html#aDES
� www.tropsoft.com/strongenc/des.htm
� www.tropsoft.com/strongenc/des3.htm

RSA

RSA security is based on the fact that it’s very difficult to factor large numbers. If a
hacker could factor a huge number in less than a few years, the hacker could break into
the communications link. So far, it’s proven too difficult (see www.rsasecurity.com/).

PRETTY GOOD PRIVACY (PGP)™

PGP™ security is also based on difficult mathematical calculations and is offered in sev-
eral versions, as detailed at the following sites:

� www.pgp.com/
� www.neiu.edu/�ncaftori/PGP.htm
� www.scramdisk.clara.net/pgpfaq.html

Dos attacks happen when a determined hacker sends packets to the robot that it can-
not handle. Some DoS attacks involve sending packets with an illegal data structure;
other DoS attacks involve sending too many packets so the channel gets clogged up. Be
sure your software can handle packets with illegal structures, and consider testing it
with simulated DoS attack data. Some web sites speak to this issue, such as www.
geocities.com/solarsistem/gif/docs/dos.htm and www-arc.com/sara/coe/distributed_
denial_of_service.html

268 CHAPTER NINE

09_200256_CH09/Bergren   4/17/03  11:24 AM  Page 268



The following web sites contain methods that can be used to secure the transmission
into and out of the robot:

� www.postech.ac.kr/cse/hpc/research/webcache/book/security/total.html
� www.cs.auckland.ac.nz/�pgut001/links/standards.html
� www.cs.auckland.ac.nz/�pgut001/tutorial/
� www.11a.nu/security.htm

Popular Communication Channels
In designing the robot, it makes sense to stick to tried and true communication proto-
cols. Several protocols, for both wireless and wired communication channels, are avail-
able and popular. Usually, this means that the hardware and software can be purchased
off-the-shelf. Robots not only need to be designed quickly, but they need to be reliable.
So make sure you check the pedigree of any commercial product. It’s easy to say that a
product conforms to a standard, but most of these standards are so complex that the
newer offerings are not as reliable as the older, more established products.

WIRELESS SYSTEMS

Several wireless data systems have been deployed for some years. We’ll discuss some
of the features and the performance of each one.

Wireless Fidelity (Wi-Fi)

Wireless fidelity (Wi-Fi), or 802.11b, is a wireless version of Ethernet LANs. It uses RF
communication in the 2.4 GHz band and the protocol is documented in 802.11b. Many
people have cards in their laptop PCs that can tap into Wi-Fi portals in stores, busi-
nesses, and public places. This technology makes Internet access available to portable
computer users. It would make a fine communications link for a robot as long as secu-
rity and other issues are handled properly.

The data bandwidth is similar to that of 10BT wired LANs that we discussed earlier
(about 1.5 Mbps or so). The range of transmission is up to a couple hundred feet, but
data speeds can drop after 50 feet. The protocol uses spread spectrum communications,
as discussed earlier. As such, it is adept at overlaying an existing communication spec-
trum and coexisting with the communications traffic in it. Faster versions of the proto-
col are just coming out now. For more information, go to www.wi-fi.org and http://
alpha.fdu.edu/�kanoksri/IEEE80211b.html.
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General Packet Radio Service (GPRS) Data

The worldwide General Packet Radio Service (GPRS) system supports data transmis-
sion. Although the frequency in the United States is different than overseas, the data-
carrying capability is similar. The GPRS data system uses RF communications in the
800 to 960 MHz bands and the data bandwidth is at most 170 Kbps , but in practice, it’s
best to limit expectations to one-tenth of that. The range of transmission is similar to
cell phones and is subject to similar blackout zones according to geography. The pro-
tocol uses Global System for Mobile Communications (GSM) and Time Division
Multiple Access (TDMA) communications with narrowband GMSK-modulated com-
munications and Time Division Multiplexing (TDM). As such, users can negotiate for
more time slots and higher data bandwidth without a loss of accuracy. More info can
be found at www.gsmworld.com/technology/gprs/intro.shtml#a1a and at www.ieng
.com/warp/public/cc/so/neso/gprs/gprs_wp.htm.

Bluetooth

Bluetooth is an RF channel that is somewhat new and just coming into its own. It, too,
uses RF communication in the 2.4 GHz band and GFSK (frequency shift keying). It
uses spread spectrum communications (via frequency hops) among 79 different 1 MHz-
wide bands. It is meant for short, 10-meter-range communication. The data bandwidth
can be as fast as 723 Kbps, but practical limitations restrict the bandwidth to about half
that. This makes it poor for video, but good for Internet communications. It is adept at
overlaying an existing communication spectrum and coexisting with the communica-
tions traffic in it. Check out www.bluetooth.com and www.csr.com/enews/sw007.html
for further information.

Infrared Data Association (IRDA)

The Infrared Data Association (IRDA) standard link is an infrared channel that has been
around for some time. It uses infrared light for short-range communications of about 1
to 2 meters. It uses baseband frequencies modulated up to 1.5 MHz to transmit data at
up to 4 Mbps. It is commonly used for short communication sessions between computer
peripherals. The following web site and PDF files provide further details on IRDA:

� www.irda.org/
� www.irda.org/use/pubs/Overview.PDF
� www.irda.org/design/infrared_data_communications_with_irda.pdf
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WIRED SYSTEMS

A few wired communication systems are widespread at this time. They can all support
higher-level protocols, so we’ll start with just the physical layers.

Phone Network

The common carrier phone systems can be used to transmit data, which can be done in
a couple of different ways:

� Dialed services Several companies (like AOL) have phone numbers that a
robotic computer could dial up to access the Internet. Modems are required to
support connections to the phone line. These modems have a top end of 33 to 56
Kbps. The top speed will usually depend on the quality of the phone connection.
Service can be denied if the line is busy. (See www.driverzone.com/guides/
modem/intro/modemguide_p3.html and www.v90.com/v90magic.htm.)

� Digital subscriber line (DSL) Given that one phone wire already comes into the
house, the phone companies use frequency division to put DSL signals on the
wire. Voice traffic only uses frequencies below 10 kHz (at most). DSL signals typ-
ically use the same wire to carry QAM signals at bit rates around 1 Mbps. The
service is continuous and largely based on the Internet. Service may be interrupted
if the robot does not exercise the communications link now and then. The phone
company takes away the robot’s IP address if the robot goes idle for too long. Just
make sure the robot is active now and then so it keeps its IP (DHCP) reservation
intact. More info can be found at www.howstuffworks.com/dsl.htm and at
www.dslforum.org/.

Cable Networks

Many homes also have cable TV coming into the house. Although the cable system was
originally designed as a one-way system, many of the cable systems now have reverse
channels capable of taking information from the homes back to the cable company.

The standard that most cable TV companies use is the Data Over Cable Structured
Interface Standard (DOCSIS), which provides time division access to home sub-
scribers. The cable system is a closed system so the physical layer can be proprietary.
The modulation methods used are Quadrature Phase Shift Keying (QPSK), 16 QAM
(upstream), and 64 QAM (downstream), backed up with RS coding, as discussed
earlier.
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It should theoretically be possible to buy any DOCSIS modem and use it on the cable
system, but this may not always be the case. DOCSIS provides data rates downstream
up to 56 Mbps and upstream rates up to 3 Mbps. However, all the data bandwidth must
be shared among all the users (and the sideband control information). More informa-
tion is provided at www.cable-modems.org/tutorial/01.htm (follow the page links) and
at www.iec.org/online/tutorials/cable_mod/ (follow the page links).

Local Area Networks (LANs)

One of the most popular wired communication systems for computers is the LAN and
the Internet. A LAN is a method of connecting computers together in a building or small
campus. The Internet is the network connecting computers together worldwide. We’ll
take a look at the physical layer first and then discuss some of the basics needed to plan
a LAN connection for the robot.

Physical Layer The most popular method of connecting to a LAN is the Ethernet.
Most computers have NIC cards or connections that can accept Ethernet connectors at
10BT/100BT data rates. 1000BT (and variants thereof) provides 10 times the band-
width, but we’ll ignore it for now. The top end of the commonly available data band-
width is 100 Mbps with 100BT. But as we discussed earlier, the Ethernet LAN is a
slotted Aloha system without reservations. As such, uncoordinated traffic tends to top
out at 18 percent of the raw capacity of the network. The transmission method is base-
band NRZ data, as discussed earlier, but the tough part is not the physical layer.

The toughest part of using a LAN is the configuration. It takes an expert to tame a
LAN system, so plan on consulting heavily with information technology (IT) person-
nel before deciding on a LAN for the robot. They’ll ask tons of questions before setting
up the LAN so the robot can use it. They’ll provide the IP address the robot needs to
function as well as the connectivity to the other computers the robot will need to
address. In addition, they can set up the robot with other services it may require, like
email and Internet access.

We must cover a couple of basics before turning the robot loose on the LAN. Books
that explain how to effectively use LANs are often a thousand pages long. The follow-
ing are the basic facts most often used in designing a LAN communication link for a
robot. These facts do not sufficiently explain all the details of how to finish the engi-
neering on the LAN link, but they outline the capabilities of a LAN so the robot’s com-
munication link can be planned.
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TCP (Error-Free) Communication

If error-free data transfers are required, the data session on the LAN must be set up with
a socket connection. Every computer attached to the LAN (and Internet) has a specific
address. Most of the communications will be between the robot and a specific computer
(point to point). The connection must first be established before transfers can take place.
Most computer software operating systems have stacks (modeled after the OSI stack)
that assist in the formation of all the connections that are needed.

Although the software is not difficult to write, it makes sense to get an experienced
software engineer to write LAN communication software. If an inexperienced person
writes the software, it will have errors that will cause significant problems later. The
programmer will bring up the software stack, obtain an IP address, establish the con-
nection (termed a socket), transfer all the data, and close the socket at the end of the
session. The following web sites outline the connection process:

� www.cs.rpi.edu/courses/sysprog/sockets/sock.html
� www.ecst.csuchico.edu/�beej/guide/net/html/
� http://java.sun.com/docs/books/tutorial/networking/sockets/
� www.exegesis.uklinux.net/gandalf/winsock/ (for Windows)
� www.cs.berkeley.edu/�kfall/EE122/lec23/sld001.htm

User Datagram Protocol (UDP) Connectionless
Communications

Sometimes error-free communication is not required. In fact, sometimes it is impossi-
ble. Consider video communications. Because video receivers require a constant stream
of data, no time is available at all to go backwards and retransmit the information in
error. Instead, the video screen simply freezes for a while until new data comes along.
The sending computer need not forge a connection in advance. It can simply determine
the IP address of the receiving computer and start transmitting. The receiving computer
need not send signals back at all.

Broadcasting

In fact, if the IP addresses are set up properly, multiple computers can receive the trans-
mitted data (also called UDP datagrams) at the same time. This technique is called
broadcasting and is a useful way to ask around for information. The sending computer
can ask via UDP broadcasting, for instance, if any other computer has specific infor-
mation. Computers wanting to reply can establish a TCP connection to reply privately.
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The only restriction on broadcasting is that it tends to stop at the boundaries of a LAN.
Broadcast data cannot be allowed out on the Internet because it would flood the system.
UDP Broadcasts must be kept inside a LAN non-UDP. Broadcasts to multiple locations
on the Internet are often set up inside a server using multiple point-to-point connections
and simultaneous transmissions of the same data.

Be careful of a couple things when using UDP communications. First of all, the data
will not be error free. Second of all, the packets may not even arrive in the right order.
TCP takes care of such things. In UDP communications, if such things are important,
they have to be taken care of in the application software written for the robot. A web
site explaining LAN technology is at http://punch.engr.wisc.edu/�orchard/net-tutorial/.

Okay, you’ve been so patient learning communication techniques that you deserve a
reward or two for getting this far. Don’t tell anyone else this; they have to read this far
to get it! After receiving a complaint that he was ending a sentence with a preposition,
Churchill said: “This is the sort of pedantry up with which I will not put.” Check out
the following web site: www.winstonchurchill.org/quotes.htm#put.

The Voice of the Robot!

The following is the voice of the future: a text-to-speech engine that illustrates just how
far the technology has come in the last few years. I suggest going to http://eserver.org/
history/gettysburg-address.txt. Copy just the first two lines (more than 30 words) from
Lincoln’s speech, paste them into the text box at www.research.att.com/�ttsweb/
cgi-bin/ttsdemo, and submit it for processing. The results are great fun. Pick the voice
you like best. Personally, I find the results amazing.
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MOTORS AND ACTUATORS 

Motors are simply devices that take in power and generate movement. Most motors
convert the power to a magnetic field using coils. A few motors do not use coils, and
we’ll discuss them later.

The power fed in to the motor coils can come from the AC power mains, DC power
supplies, or from controllers that control the coils for specific purposes. Motors are
divided into classes based on the type of power they use.

AC Motors
Most motors in use today are AC motors designed for medium to heavy-duty work.
They are present in most motorized appliances that use AC power. They are inexpen-
sive because they do not require complicated construction and because they are built in
large quantities. Motors differ in their construction, speed control, cooling methods,
control systems, size, and weight.

� Construction AC motors have the coils built in to the outside casing (the sta-
tor) and magnets that spin in the middle (on the rotor).
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� Speed The number of windings and the frequency of the power fed to the coils
fix the speed of the motor. The speed of AC motors is basically constant. As such,
they may not be the best for robots. Let’s consider just 60 Hz of power for these
examples. If just three windings form a single rotating field (one pole), the motor
spins at 60 Hz or 3,600 revolutions per minute (RPM). As three more winding
coils are added, the number of poles goes to 2 and the RPMs go down to 1800.
The following equation is used to determine the RPM, where p is the number of
three winding coils (poles), f is the frequency of the power, and s is the speed of
the motor in 4 RPM:

� Cooling The windings are on the outside case, where they can be cooled easier.
Furthermore, with no brushes, the casing can be wide open to admit air for
cooling.

� Controls AC motors are not easy to control, in either speed or position. It is pos-
sible to build an electronic controller to trim the speed and power consumption of
an AC motor, but it is best used in situations where only gross mechanical power
is needed, especially for constant speed applications.

� Portability Given that a portable robot probably is running off batteries, AC
motors may not be the right choice. Along with the difficulties of controlling the
speed and position of an AC motor, it’s fair to conclude they may not be a good
choice in a robot.

DC Motors
DC motors come in many different styles. AC motors only have fewer styles because
their architecture attempts to take advantage of the existing movement (waveform) of
the AC power.

Like most motors, DC motors generate movement by creating magnetic fields within
the motor that attract one another. By and large, DC motors have permanent magnets
in the stator and the rotor has the coils (the reverse of AC motors). But since DC power
has no movement (waveform) of its own, the motor electronics must create a change in
the DC waveform as the motor rotates. This can happen in several ways.

s �  60 �  f>p
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DC MOTORS WITH BRUSHES

� Construction The rotor would stop spinning if the DC field in the rotor coils
never changed. By altering the polarity of the DC voltage on the coil as it rotates,
we can continually make its field attract the next magnet in the stator. As the rotor
rotates, a set of position-dependent switches in the rotor switch the field on the
rotor coils. The switches are implemented with a stationary, partitioned slip ring
on the rotor bearing (for incoming power) and brushes that drag around the ring
to power the coils. After the rotor rotates enough, the brushes move to the other
part of the slip ring and reverse the polarity on the coils. It’s a little like keeping a
carrot in front of a horse. This structure, however, has some clear disadvantages:
� Electrical noise The brushes create sparks, which emit a great deal of elec-

trical radiation. Further, since the voltages change abruptly, the power supply
noise can be severe.

� Fire hazard Sparks can touch off explosions.
� Reliability Brushes can wear out and get clogged with dirt. After a while,

motors may need replacement brushes.
� Speed DC motors are controlled by varying the voltage on the DC power sup-

ply. Higher-voltage motors are generally more powerful.
� Cooling Cooling is a little more of a problem with DC brushed motors since the

electrical coils are inside on the rotor. Furthermore, since the speed is controlled
by linearly varying the power to the coils, the dissipation in the power supply can
become a problem.

� Controls By controlling the voltage and current through the coils, both speed
and torque can be controlled. By and large, most DC motor controllers use a chop-
ping waveform to control the average DC voltage (as opposed to a linear regula-
tor). By turning the DC coil voltage off and on (to full voltage) very rapidly, the
average DC voltage on the coil can be controlled by means of a duty cycle. Such
motor drives are more efficient.

� Portability DC motors tend to take up more room than AC motors of similar
power because of the brushes and coils on the rotor. Further, since the coils are on
the rotor, they have a considerable gyroscopic effect. A lot of spinning mass exists
on the rotor.

BRUSHLESS DC MOTORS

� Construction Brushless DC motors have much the same construction as AC
motors. The rotor has permanent magnets, and the coils are on the case (stator).
By altering the polarity of the DC voltage on the stator coils as the rotor rotates,
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we can continually make its field attract the next magnet in the rotor. As the rotor
rotates, electrical controls switch the field on the stator coils. This structure has
some clear advantages:
� Electrical noise Much less electrical noise exists than with brushed DC

motors.
� Fire hazard No sparks are made.
� Reliability No brushes are used that could wear out. Further, far less mass

takes place on the rotor.
� Speed DC motors are controlled by varying the voltage on the DC power sup-

ply. Higher-voltage motors are generally more powerful.
� Cooling Cooling is easy since the coils are on the casing, but because the speed

is controlled by linearly varying the power to the coils, the dissipation in the power
supply can become a problem.

� Controls Brushless DC motors can be controlled with a similar type of chopped
waveform control that the brushed DC motors use (with accommodations for the
interference from the brushes). Since no brushes are used, the controller must also
sense the motor position. This makes the controller much more expensive.

� Portability Brushless DC motors are fairly lightweight, but the controller can
be complex. Further, make sure the motor does not have delicate sensing wires (to
sense position). Try to get the kind where the controller senses the motor position
automatically. It makes the controller more expensive, but the motor will be more
mechanically reliable.

DC STEPPER MOTORS

� Construction Stepper motors have much the same construction as AC motors
and DC brushless motors. The rotor has permanent magnets, and the coils are on
the case (stator). By altering the polarity of the DC voltage on the stator coils as
the rotor rotates, we can continually make its field attract the next magnet in the
rotor. As the rotor rotates, electrical controls switch the field on the stator coils.
Some clear differences exist between steppers and DC brushless motors:
� Stepping speed Stepping motors are designed with more rotational positions

and tend to step from position to position faster. They’re more like a digital sys-
tem and the DC brushless motors are more like an analog system.

� Stopping Steppers are designed to stop on a dime and hold their position. For
this reason, they tend to have less rotational mass. DC motors can perform the
same feat but must have carefully designed servo systems to sense and hold
their position. Steppers hold the position that is defined by the motor geometry.

� Speed Steppers are not necessarily designed for speed. If they go too fast, they
may lose their position by slipping over one too many poles. They have to move
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deliberately. They are also not well geared for changing loads; they can lose track
of their position if the load varies in a sudden manner.

� Cooling Steppers can be fairly open and easy to cool. If they remain stationary
for some time, the current in the coil can be reduced. A good controller will do
that automatically.

� Controls Steppers have relatively complex controllers. They are generally com-
puterized since the computer must keep track of the position and momentum of
the motor. More complex controllers have more than just on-off control of the coil
voltage and current.

� Portability Steppers tend to be lightweight and fairly sturdy. They are not par-
ticularly good with large or varying loads, but they function reliably in most appli-
cations.

Exotic Motors

PIEZO-ELECTRIC MOTORS

Piezo-electric materials are ceramics that change shape when an electric field is applied
across them. Watch alarms and phone ringers are the most common applications of such
materials. They don’t move much, but they can move often. They are used for small
motions like creeping and fine adjustments. If the robot must have very fine, accurate
positioning, piezo-electrics can provide the movements. They can move large loads,
albeit slowly. More info on these motors can be found at the following web sites:

� www.piezo.com/intro.html
� http://web.umr.edu/~piezo/

ORGANICS

Some organic crystals expand and contract when a current is passed through them. No
simpler motor exists. Unfortunately, these tend to be very fragile.

Here are some more web sites with information about motors:

� www.instantweb.com/o/oddparts/acsi/motortut.htm
� www.slewin.clara.net/elec/tmotor.htm
� www.cs.uiowa.edu/�jones/step/
� www.motionnet.com/cgi-bin/search.exe?a=cat&no=1708
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MECHANICS

The executioner’s argument was, that you couldn’t cut off a head unless there was
a body to cut it off from . . . The King’s argument was, that anything that had a
head could be beheaded.

—Speaking of the Cheshire Cat’s smiling head,
from Lewis Carroll’s Alice’s Adventures in Wonderland

So now we’ve spoken of energy, software, reliability, management, signals, and data.
Mighty ephemeral stuff all that. Lest we forget, robots must be made of bone and gris-
tle! Rubber, steel, plastic, fiber, and ceramics are the true stuff of robots. Just as many
electrical engineers fancy themselves to be great mechanical designers, I’m still wait-
ing for my invitation to deliver the keynote address to the American Society of
Mechanical Engineers. All that said, I can pass along some tips and tricks.
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Materials
Robots can be made out of just about anything. The environment and the mission of the
robot often pose severe constraints on the materials that can be used. The Air Force is
hoping to make robot butterflies for reconnaissance. Although it’s true that most cars
are made out of steel, I doubt a steel butterfly would get very far.

Many different materials are available for new robot design, and many considerations
must be made when choosing the materials:

STRENGTH TO WEIGHT

Unless a mobile robot is to be used in sumo wrestling matches or very high winds, it
makes sense to keep the weight down. One way to accomplish this is to minimize both
the amount and density of the construction materials. We have to know the strength of
the material before minimizing the amount used. Shaving material off structural mem-
bers can be a risky game. It requires advanced knowledge of structural engineering and
simulations. Picking a material that is not very dense is somewhat simpler. The key
parameter to look at is the strength-to-weight ratio. Materials that are very strong for
their weight helps keep the weight of the robot down. The selection of such materials is
somewhat complicated by the fact that certain types of strength depend upon the shape
and formation of the material used. For example, a well-folded cardboard structure can
hold far more weight than a single piece of cardboard.

An article on the effect of new materials in designing sports equipment can be found
at www.tms.org/pubs/journals/JOM/9702/Froes-9702.html.

These following web sites and PDF file outline the characteristics of various types
of materials:

� www.radshape.co.uk/ (For metals, look under materials.)
� www.robotstore.com/download/Muscle_Wire_FAQ_V3.pdf (Actuator materials)
� www.mdacomposites.org/materials.htm (For composite materials)

MACHINING AND FORMATION

It doesn’t do much good to have a very strong material if it cannot be formed into the
shapes required for the robot.
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Metals

It’s easy to find a metal-forming shop in most cities. Further, metals are not difficult to
work with at home; just make sure all safety precautions are observed. Very hard met-
als can be difficult to use because they require (expensive) tools that are even harder.
Diamond studded (and other) tools are available for such work.

Plastics

Plastics can be molded, melted, and altered by machine to change their shape. Molds
are expensive, in general, to build. Vacuum forming is a reasonable alternative for mak-
ing thin sheets of plastic into the required shapes. Plastics can undergo machine work,
even at home, but the material tends to foul the tools.

Composites

Composites can be used much like fiberglass. They can be difficult to control but offer
very good strength for their weight. Metal, wood, and plastics are relatively well known
materials. Composites, on the other hand, are newer and are just finding their way into
consumer products like bicycles. These materials are built very much like fiberglass.
Fibers, in the form of woven mats, are impregnated with a filling material that reinforces
the fibers. The strength is largely in the direction of the fibers, not across the fibers.
Some care must thus be taken in the design and layout of the fibers within the robot
chassis. Common fibers used include glass, carbon fibers, and plastic fibers. Many dif-
ferent resin materials exist, such as epoxy and polyurethane. Filler materials, like short
glass fibers, are available to make the resin stronger as well. The Market Development
Alliance web site contains some good definitions of other materials’ mechanical prop-
erties at www.mdacomposites.org.

The previously mentioned Market Development Alliance web site and the Com-
posites Fabricators Association (www.cfa-hq.org/) are great sources of information
about composites.

Wood

Wood is easy to work, but not very strong. Watch out for termites!
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COST

Most of the cost of materials will be related to the machining costs. Materials, except
for very hard metals and special composites, do not cost all that much.

AVAILABILITY

Metals, wood, and plastics are relatively easy to procure. Composite materials are not
that hard to find either. Most of these materials can be purchased in preformed shapes
like pipes, sheets, spheres, and so on. Consider starting the design using preformed
parts; they can offer great strength and accuracy.

STRENGTH

Materials have several different characteristics that quantify their strength under vari-
ous kinds of loads.

Tensile

This is a rough measure of how strong the material is when stretched (like a string).
Glass and composite materials excel at this.

Compression

This is a measure of how well the material can hold up weight resting on it (like a post).
Metals excel at this.

Flexing

This is a measure of how the material deforms with sideways pressure. In some designs,
the material must not bend at all. In other designs, the material must bend (like a tree
withstands a strong wind). As such, failure can come by bending too much, by break-
ing, and by failing to return to the original shape. All the materials mentioned can be
used (by proper design) to suit the requirements of bending or nonbending applications.

Shock

This is a measure of the material’s ability to survive a sudden shock. Shocks present a
sudden increase in pressure on a material and radiate shock waves in ways that slow,
steady pressures do not.
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Abrasion

This is a measure of the ability to withstand repeated rubbing and use. Some materials
will not abrade much at all. Others will not only abrade but shed harmful particles
as well.

Creep

Materials subject to steady pressure will tend to give over time, or creep. Plastics, start-
ing their life as liquids, are subject to creep. For much the same reason, metals can creep
some. Just make sure that the tolerances of the robot will be maintained over time in the
face of creep.

So which materials should be used in a robot? All the aforementioned factors have
to be considered, but here are some guidelines based on applications:

� Home project If the robot is a home project, aluminum is not a bad choice. It’s
cheap, easy to get, lightweight, easy to alter by machine, and relatively strong.

� Industrial floor If the robot is for nonmobile industrial use, consider steel for
its durability. If the volume of manufacture is high enough, consider plastics.

� Consumer If the robot is for commercial release, consider plastics.
� Space If money is less of a problem than weight and strength, consider the more

exotic metals like titanium and composites. Many new considerations come into
play for space-born robots that must face severe G forces, extreme temperature
ranges, vacuum, radiation, and so on.

Some Cautions
The choice of materials can introduce other problems. A few are mentioned in the fol-
lowing sections.

DISSIMILAR METALS’ GALVANIC CORROSION

It’s never a good idea to put dissimilar metals into a robot, at least not if they come
into contact with each other. Action at the atomic level can set up currents and cause
corrosion. This is a particular problem in the marine environment where salts can get
at the metal junction. Do not forget that fasteners must be taken into account as well. If
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dissimilar metals must be used, consider metal plating to decrease this effect. See the
following web sites for further information:

� www.seaguard.co.nz/corrosion.html
� www.engineersedge.com/galvanic_capatability.htm
� http://corrosion.ksc.nasa.gov/html/galcorr.htm

FATIGUE

Most materials suffer damage when they are bent or otherwise deformed. Even if they
return to the original shape, the damage still exists. With repeated bending, the material
will eventually give way and fail. During the design of the robot, evaluate all the repeated
operations. Make sure none of the materials will be stressed beyond their limits of
fatigue. Consult companies that specialize in bendable materials of the type required.

CORROSION

We’ve already spoken briefly about corrosion in a few places, including Chapter 4.
Materials can be clad in plastic or plated with other metals to decrease the rate of cor-
rosion. If corrosion is a strong possibility, consider using materials that will not cor-
rode. The Kennedy Space Center offers information on the causes and prevention of
corrosion at the following sites:

� http://corrosion.ksc.nasa.gov/html/corr_fundamentals.htm
� http://corrosion.ksc.nasa.gov/html/publications.htm

LUBRICATION AND DIRT

Moving parts, especially bearings, sometimes require lubrication. Just remember, the
basic function of oil and grease is to smear all over everything!

A buildup of grease and dirt can engender a host of problems.

� Electrical problems Lubricants can coat electrical contacts and insulate them
from the mating contact. These sorts of failures are common.

� Dirt Lubricants trap dirt, causing extra friction and sluggish action. Eventually,
the dirt swamps out the positive effects of the lubricant. If the robot cannot be
serviced, this becomes a critical problem.

In the design of the robot, try to find sealed bearings and other moving parts that do
not require lubricants. If a lubricant must be used, find an exotic one that is a bit tamer.
Graphite and Teflon are possibilities, but each have their own faults.
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TOLERANCES

In most mechanical designs, the parts must fit together cleanly. Moreover, the parts
must continue to fit as the robot gets older. One of the most difficult tasks in building
a robot is making it sound. Parts that bend and screws that come loose can make a
design degrade rapidly. Such mechanical failures are probably the single worst problem
plaguing robot designs.

Here’s one small example of a trick that may help. Consider a three-part robot with
parts A, B, and C. Also, assume all fasteners have some play that increases over time.
Let’s call the typical play T millimeters; the unintended movement that can occur
because of inexact mechanical tolerances. Another common term for this is slop,
although I suspect the robot would be offended. Although this is a gross oversimplifi-
cation (and in one dimension), it can be used to illustrate the design of tolerances. Here
are two ways a design can be built under these conditions.

� Bad design A bad design would attach A to B, and B to C. Part C will move with
respect to part A with movements that could be the sum of the other two tolerances,
or 2T. The other two pairings will move respectively within the tolerance T.

� Good design A good design would attach A to B, B to C, and A to C. Slop
within the system will be limited to roughly T, not 2T.

In general, consider having a central, rigid chassis that sets the tolerances for all play
within the robot. Try to avoid the accumulation of play within the design. This advice
would apply to all robot designs except certain exceptional designs that actually rely on
the flexibility of the design.

Static Mechanics
We’ve already spoken about topics like compression, tensile strength, hardness, flex-
ing, and materials. The derivation of the mechanical static properties of shaped materi-
als (like compression strength, tensile strength, flexibility, etc.) is beyond this text, but
this does not mean that the design has to be done blindly. If preformed materials are
used, the manufacturer should be able to specify these properties for the parts in ques-
tion. If the manufacturer cannot, then consider finding another manufacturer. The
parameters in question are not difficult to calculate or measure empirically, but the engi-
neer must have the right tools and knowledge.

If the tensile strength or compression strength of a structural member must be cal-
culated, consider finding an ME consultant to perform the work. One other option
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would be to find a similar part of roughly the same shape and extrapolate the parame-
ters. Here’s one example.

Suppose you want to know the compression strength of an L-shaped beam made of
a specific type of plastic. If the manufacturer has already specified the compression
strength of a single slab of material with the same thickness, you have enough infor-
mation to make an estimate. Simply add together the compression strength of the two
flat portions of the L-beam. This estimate of the compression strength for the L-beam
will probably be low, but that’s just fine.

Dynamic Mechanics
The field of dynamics is vast and complicated. Even without the complications of rel-
ativistic motion, the physics and math are difficult and beyond the scope of this text.
However, a couple of useful tips must be passed on.

ENERGY CALCULATIONS

It’s useful to be able to estimate the energy required to make parts move within the
robot. The calculations required for making these estimates vary with the types of
motions involved.

Consider a bicycle. How much energy does it take to accelerate a bike to a fixed
speed? Let’s assume the following: The bike chassis, without the wheels, has a mass of
W1. Each wheel has a mass of W2 and has a radius of R. The bike will accelerate to a
speed of V. The energy of a mass moving in a straight line is

where m is the mass and v is the velocity. Notice the similarity here with Einstein’s
famous E � mc2 formula!

Now, if the wheels were not spinning, the energy of the bike would be

But the tires are indeed spinning and contain energy as well. The energy in a mass
constrained to rotate about a central point is

E �  0.5 �  m �  r2 �  1du>dt 22

E �  0.5 �  1W1 �  W2 �  W2 2 �  V2

0.5 �  m �  v2
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where m is the mass, r is the radius of rotation, and u is the angular position of the rotat-
ing mass. This is the best equation for measuring the energy, but there’s an easier way.

If all the weight, W1, of the tire were at the edge (radius r), then each particle of the
tire would be moving at a speed of V. Each tire’s rotational energy would be

As a practical matter, not all of the tire’s mass is at the rim. Some of the mass is within
the spokes. For the bicycle, the previous equation is a good conservative estimate, but
for wheels shaped like a hockey puck, significant weight would exist on the inside of the
wheel, closer to the axle. The rotational energy of the wheel would be lower than the pre-
vious number. It would take a bit of calculus to compute the proper number. However,
estimating the number can be done in an easier way. The energy of a rotating particle of
mass grows as r2, but the number of such particles grows with the circumference of travel
as r increases. The calculus shows the energy increasing as r3. If we want to estimate the
rolational energy in the wheel, we want to find r1 such that r13 � 0.5 r3. This radius, r1,
turns out to be about 80 percent of r. Although the outside of the wheel might be mov-
ing at a speed of V, the average part of the wheel at a radius of r1 is moving at .8 � V. So
a good first approximation for the rotational energy in a solid core wheel would be

This would put the total energy within the bike between the following two energies:

� High estimate This estimate assumes all the mass of the wheel is at the edge
near the rim:

� Low estimate This estimate assumes all the mass of the wheel is evenly dis-
tributed throughout the wheel:

Do not forget that imparting energy to parts within the robot cannot be done effi-
ciently. These equations are only theoretical and are used to estimate only the energy

E �  0.5 �  1W1 �  2.64 �  W2 2 �  V2

E �  0.5 �  1W1 �  W2 �  W2 2 �  V2 �  2 �  10.32 �  W2 �  V2 2

E �  0.5 �  1W1 �  4 �  W2 2 �  V2

E �  0.5 �  1W1 �  W2 �  W2 2 �  V2 �  2 �  10.5 �  W2 �  V2 2

E �  0.5 �  W2 �  10.8 �  V 22 �  0.32 �  W2 �  V2

E �  0.5 �  W2 � V2
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within the moving parts. The energy needed to accelerate the parts to the speeds in ques-
tion will be greater than the estimate.

NATURAL FREQUENCIES

We’ve already covered natural vibration in a previous chapter. All mechanical structures
will vibrate easily at specific “natural” frequencies. The materials and the structure con-
tribute to this particular type of vulnerability. At worst, the robot may shake apart. At
best, the robot may make noise as it moves. The best way to eliminate this problem is
to vary the design in ways that make cooperative vibrations less likely. Notice that the
solutions for damping out vibrations are much the same as adding friction to our sec-
ond-order control system.

Here are a couple web sites about natural frequency vibrations:

� www.ideers.bris.ac.uk/resistant/vibrating_build_natfreq.html
� www.newport.com/Vibration_Control/Technical_Literature/Fundamental_of_

Vibration/Fundementals_of_Vibration/

HEAT TRANSFER

A couple of short notes must be made about heat transfer. Often heat must be taken out
of a component. Heatsinks, for example, remove heat from integrated circuits like
microprocessors. Although heat transfer is a general problem, we can use a processor
and a heatsink in our example without a loss of generality. Heat flows from the proces-
sor, through the heatsink, and into the ambient air. Each component has a well-specified
thermal impedance that can be used to measure its effectiveness. Low thermal imped-
ance means the component can transfer heat more effectively. Here’s how the calcula-
tions are done.

Suppose the processor dissipates 20 watts, that the ambient air is at 25 degrees
Celsius, and that the thermal impedance of the heatsink is 2 degrees Celsius per watt.
The processor will rise to a temperature of

This temperature may be too high for the processor. If that’s the case, then lower the
temperature of the ambient air, get a heatsink with a lower thermal impedance, or find
a lower-energy processor.

25 �  2 �  20 �  65 degrees Celsius
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Here are a few web sites describing thermal impedance calculations:

� http://sound.westhost.com/heatsinks.htm#asample%20calc
� www.hardwarecentral.com/hardwarecentral/tutorials/743/1/
� www.hardwarecentral.com/hardwarecentral/tutorials/950/1/
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Note: Boldface numbers indicate
illustrations.
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802.11b, 269

A
abrasion, 127, 285

cable wear and, 127
AC motors (See also motors),

275–276
acceleration, 32–39, 57–59, 

69–71
acid test, 136
ACK/NACK, 245–246
actuators, 275–279

digital, 5, 53, 54, 55
addressing memory, 91–92, 

95, 97
advanced RISC machines, 82
algorithms, in computer

performance, 115
Aloha time division

communication systems, 261
alpha testing, 137
altering design parameters,

48–49, 65
alternating current (AC), 169
altitude, 135
amplitude shift keying (ASK),

233, 236
analog computers and

electronics, 78–79
analog controllers, 82–83
analog noise, 200
analog to digital (A/D)

converters, 191–192, 192,
198–201

anti-aliasing filters (See also
digital signal processing),
192–197, 196, 201–207, 202

analog filters and, 204–206,
204, 205

distortion and, 203
filters for, 207
ideal design of, 202, 202, 203
inductors in, 205
resistors in, 205
rolloff in, 203
stopband in, 203
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Application layer, OSI layered

network model, 225
application specific integrated

circuits (ASIC), 82, 216
arithmetic capabilities, computer

hardware and, 117
array processors, 84
assembly language, 99–100
authentication, 267
automation, high level design

and, 148–151
availability, 125–126

B
backup plans, 136–137
balance, 58
band stop filters in, 210, 210
bandpass filters in, 210, 210
bandwidth allocation for

communication, 103, 118,
228, 252–254, 258–259

changes in, 258–259 
guarantee of, 259
reverse channel, 259

bandwidth limited
communications, 
254–256, 256

Bartlett (triangular) windows for
FIR filters, 212–213, 213

baseball pitching robot, 47
baseband transmission (See also

communications), 228–232

batteries, 149, 165–166
altitude and, 135
charge level in, 165
discharge cycle in, 

165–166, 166
intelligent, 149
internal resistance in, 166
lifetime of, 166
rechargeable, 155
reliability and, 127
safety and, 129–130
voltage level in, 165–166

benchmarks for computer
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beta testing, 137
bidirectional communication

channels, 241
bill of material (BOM), 125
binary instructions, 99–100
bit error rate (BER), 234–236,

235, 239
bits, 89–90
Blackman window for FIR

filters, 214–215, 214
block checksums, 241–244
Bluetooth, 270
braking, 184–186

energy and power supplies in,
184–186

motor type, 186, 278
pad type, 186
power failures and, 185
safety and, 185
speed and, 185–186

branching, in parallel 
processing, 84

broadcasting, 273–274
brushes in DC motors, 277
brushless DC motors, 277–278
bulbs, reliability and, 128
burst errors, 251
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buses, input/output (I/O),
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C
cable networks, 271–272
cabling, interference and,

142–143
cache memory, 95–98
carbon fiber, 283
carrier signals, 233
caution, in control systems

design, 57–58
central control systems, 24
central processing unit 

(CPU), 88
centralization of energy code,

161–162
channel tuning in, 246–247
channels, 250, 251–252
characteristic differential

equation, for control systems,
37–39

characterizing robot
performance and altering
control system design, 41–48

charge level, batteries and, 165
checklist in project 

management, 16
checksums, 241–244

IP type, 243
polynomial, 243
Reed-Solomon, 244–245

clock time, and energy and
power supplies, 171–173, 172

closed loop control systems (See
also control systems), 26–39,
26, 47–48, 48

closed system 
communications, 260

code division multiple access
(CDMA), 246, 263–264

code division shared access
systems, 262–264

coefficient of friction, in control
systems, 41, 45

coefficient test, in FIR 
filters, 216

column address select (CAS), 95

commercial off the shelf (COTS)
hardware/software, 121

communications, 21–22, 102,
221–274

10BT/100BT/1000BT
standards for, baseband, 
232, 272

Aloha type systems, 261
amplitude shift keying (ASK)

in, 233, 236
bandwidth allocation for, 228,

252–254, 258–259
bandwidth limited, 

254–256, 256
baseband transmission in,

228–232
bidirectional channels in, 241
bit error rate (BER) in,

234–236, 235, 239
broadcasting, 273–274
cable networks in, 271–272
carrier signals in, 233
channel tuning in, 246–247
channels in, 251–252
checksums, block checksums

in, 241–244
closed system, 260
code division multiple access

(CDMA) in, 246, 263–264
code division shared access

systems in, 262–264
compression in, 265–266
concatenated codes in,

248–252, 249
convolutional codes in, 

250, 252
cooperative user, 260
data density in, 229
defining communications role

and purpose, 221–223
delays in, 259
demodulators for, 236–238
direct current (DC) balance 

in, 229
distortion in, 262
distributed control system, 23
distribution of errors in, 240
downloading times and, 91
duplicate or redundant data

transmission in, 239, 240

Eb/No curves in, 234–236,
235, 239, 247

encoding/decoding in, 229
encryption and, 266–269
energy and power supplies 

in, 175
error control in (See also error

control), 238–257
error distribution in, 240
eye patterns and "open eye" in,

238–239, 239
forward error correction (FEC)

in, 248
Fourier transforms for

compression in, 265–266
frequency allocation/separation

in, 262
frequency division shared

access systems in, 262
frequency shift keying (FSK)

in, 234
global positioning system

(GPS), 82
Huffman compression in, 266
information signal in, 233
infrared, 107
interleaver/deinterleaver in,

250, 252, 257
Internet and, 82
Internet protocol (IP) in, 82
intersymbol interference (ISI)

in, 230–231, 230, 231, 262
jamming in, 228
load limits for, 260
local area network (LAN), 82,

102, 105–108, 272
modems in, 271
modulation in, 232–238
modulator/demodulator in,

250, 251–252
nonreturn to zero (NRZ) codes

in, 229
open loop control system, 25
Open Systems Interconnection

(OSI) layered model for
networks in, 224–228

parity bits in, 244
phase shift keying (PSK) 

in, 234
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Physical layer of OSI reference
model in, 226–228

privacy issues in, 260
pulse distortion in, 230–231,

230, 231
quadrature amplitude

modulation (QAM) in, 238,
238, 255–256, 255, 256, 271

quadrature phase shift keying
(QPSK) in, 271

radio frequency (RF), 82,
106–107

raised cosine filters (RCF) in,
230–231, 231

Reed-Solomon checksums in,
244–245

retransmission in, ACK/NACK,
245–246

robustness of coding schemes
in, 230

RS encoder/decoder, 250, 252
RS232/432 standard for,

baseband, 232
RS422 standard for, 

baseband, 232
run-length compression 

in, 266
security in, 266–269
self-clocking in, 229
Shannon capacity limit in,

226–228, 226
shared access, 258–264
signal to noise (S/N) ratio in,

226–228, 226, 234–236, 235
single/multiple error detection

and correction in, 241–244
spread spectrum (SS) in,

263–264, 270
spy hopping networks and, 176
standards for baseband

communications, 231–232
symbol space in modulation

for, 236–238, 236, 237, 238
TCP error-free communication

in, 273
telephone networks for, 271
time division shared access

systems, 261
trellis coding in, 264–255
Turbo coding in, 256–257

unidirectional communication
channels in, 247–248

user datagram protocol (UDP)
in, 273–274

Viterbi codes for, 240, 247,
252–257

voice, text to speech engines
for, 274

wired systems for, 271–274
wireless, 82, 106–107,

269–270
comparable systems, 136
compilers, 99–100
complementary metal oxide

semiconductors (CMOS),
167–168

complex instruction set
computer (CISC), 100,
101–102

complexity in control system
design, 46, 135

composites, 283
compression strength, 284, 288
compression, 265–266
computation registers, 98–99
computer assisted design 

(CAD), 150
computer hardware, 73–121

analog controllers in, 82–83
analog type, 78–79
application specific IC (ASIC)

in, 82
arithmetic capabilities of, 117
array processors, 84
bandwidth and, 118
benchmarks for performance

in, 116–117, 119
central processing unit (CPU)

in, 88
commercial off the shelf

(COTS) hardware/software
in, 121

communication technology 
in, 82

complex instruction set
computer (CISC), 100,
101–102

connections and cables in, 111
constraints in design, selection

of, 114–121

control systems, 61
cooling for, 118
coprocessors for, 102
cost of, 74, 120
development time/expense in,

74, 120–121
digital signal processing (DSP)

in, 82, 85–88, 191–220
display system in, 83, 104–106,

112–113
embedded processors for,

113–114
execution time in, 115–117
fabless semiconductors in, 82
FIR filters in, 216
freeware and, 76
game units and, 83
general purpose processors in,

88–89
hard disk drives in, 109–111
high level design (HDL)

specifications and, 113,
148–151

input/output (I/O) in (See also
input/output), 103–108

instruction set in, 99–100
leveraging existing technology

in, 75–76
licensing of software and, 76
low-power units, personal

digital assistants (PDAs), 83
memory in (See also memory),

79–81, 90–98, 117–118
mixed signal circuitry in,

82–83
multimedia extension (MMX)

instructions sets for, 102
neural networks and, 79–81,

80, 81
overhead and, 179
parallel processors in, 

83–85, 84
performance of, 115–117
peripherals for, 108–113
power supplies for, 

90, 118, 119
printers in, 112
read only memory (ROM) 

in, 101
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computer hardware (continued)
reduced instruction set

computer (RISC), 100
redundant array of inexpensive

disks (RAID) in, 110–111
registers in, computation and

storage, 98–99
reliability of, 119
removable storage media 

in, 111
reprogramming in, 119
resource utilization in, 118
risks of, 74–75, 121
selection process for, 113–121
shareware and, 76
software tools and, 120
space requirements for, 119
special purpose processors in,

81–83, 118
speed of execution in, 81–82
tape drives in, 111–112
temperature limits and,

132–133, 133
third-party hardware/software

and, 76
time to completion,

engineering and, 77
voltage for, 119
word size in, 89–90, 117

concatenated codes, 
248–252, 249

connectors/connections, 111
interference and, 142–143
reliability and, 126–127

contaminants, 126, 135
content addressable memory

(CAM), 97
continuous vs. discontinuous

functions, in control systems,
51–52, 52

control systems, 19–71
acceleration in, 32–39, 57–58,

69–71
altering parameters of, 

48–49, 65
balance in, 58
cautions in, 57–58
central, 24
characteristic differential

equation in, 37–39

characterizing robot
performance and altering
design of, 41–48

closed loop, 26–39, 26, 
47–48, 48

coefficient of friction in design
of, 41, 45

complementary metal oxide
semiconductors (CMOS) in,
167–168

complexity in, 46
computers for, 61
continuous vs. discontinuous

functions in, 51–52, 52
convergence and, 66
cost function in, 63, 64–67
damping and, 32–35, 34, 35,

36, 42–44, 42, 48, 50, 51
design of, 39–58
digital actuators in, 53, 54, 55
displacement (spring constant)

in design of, 40–41
distributed, 22–24
dynamic response in, 29–39
energy and power supplies in,

30, 159–189
errors in, 24–25, 25, 27–29, 

27, 28, 64
evaluation of, 64
feedback in, 26, 48
force conversion in, 41
force evaluation in, 31
frameworks for, 61–63
frequency response and, 54–55
frequency selection in, 45
friction blocks in, 55
friction force in, 31–32, 40, 

41, 45
gain changes in, 56, 56
headroom in, 50–51
hunting in, 53–56, 55
hysteresis elements in, 

55–56, 56
iteration of computations in,

61–62
Laplace transforms and, 37–39
least mean square (LMS)

algorithm in, 62–65

maneuverability in, 57
mass at heights (potential

energy) in, 31
mass in design of, 40, 48
mechanical stress in, 58
mechanical wracking and, 53,

55, 58
motor force in, 31, 276, 277,

278, 279
moving mass (kinetic energy)

in, 31
multivariable, 58–67
nonlinear control elements in,

46, 51–52, 52
open loop, 24–26, 25
oscillation frequency (ringing)

and, 44–47
overshoot in, 44, 46, 50
performance and, 50, 65
position in, 32–39
power in, 57
quadratic equations in, 37–39
ratchet mechanisms in, 56
reaction of robot vs. design of,

40–41
resonant frequencies in, 45
response time in, 43–44
safety and, 57
second-order, 32–39, 42, 42,

43, 47–48, 48
sensors in, 55
settling time in, 44
solutions and problem solving

for, 66–67
space effects in, 69–71
speed and, 57, 60–61, 67
spring constant in design of,

40–41
springs (potential energy) and,

30, 31, 48, 49, 50–51, 55
stability in, 45, 64, 66
steady-state error in, 64
step input function in, 

29–30, 29
thermostats in, 52–53, 54
time effects in, 67–68
traction and, 58
undershoot in, 50
variables controlled

simultaneously in, 64
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velocity in, 32–39, 57
weight on spring as example of

second-order system in,
32–39, 33–36, 36

controller area network 
(CNA), 105

controllers, analog controllers 
in, 82–83

convergence of control 
systems, 66

convolutional codes, 250,
252–257

cooling
computer hardware and, 118
motors, 276, 277, 278, 279

cooperative user
communications, 260

coprocessors, computer
hardware and, 102

corrosion, 285–286
cost function, in control systems,

63, 64–67
costs

computer hardware and, 
74, 120

distributed control system, 23
material, 284

creep, 285
current, reliability and, 126

D
damping in control systems,

32–35, 34, 35, 36, 42–44, 
42, 48, 50, 51

data density in 
communications, 229

data encryption standard 
(DES), 268

Data Link layer, OSI layered
network model, 224

Data over Cable Structured
Interface Standard (DOCSIS),
271, 272

DC motors (See also motors),
276–279

DC stepper motors, 278–279
dead man power controllers, 174
delay in communications, 259
delay in IIR filters, 219, 219

deliverables, 8
denial of service (DoS) 

attacks, 267
design (See also high level

design), 147–151
designing control systems (See

also control systems), 39–58
destructive readout of 

memory, 94
development time for computer

hardware, 74, 120–121
dial-up Internet services, 271
differential equation, control

systems, 37–39
digital actuators, 53, 54, 55
digital noise, 201
digital signal processing (DSP)

(See also filters), 82, 85–88,
191–220, 248

analog filters and, 204–206,
204, 205

analog-to-digital (A/D)
converters and, 191–192,
192, 198–201

anti-aliasing filters and,
192–197, 196, 201–207, 202

band stop filters in, 210, 210
bandpass filters in, 210, 210
Bartlett (triangular) windows

for, 212–213, 213
Blackman window for FIR

filters in, 214–215, 214
central processing unit (CPU)

in, 88
delay in IIR filters for, 

219, 219
digital to analog (D/A)

converters and, 191–192,
192, 207

distortion and, 203
dithering (A/D) in, 200–201
filter design for, 208–219
finite impulse response (FIR)

filters and, 86, 208–219,
209, 215–217

fixed vs. floating point
numbers in, 87–88, 117

Fourier transforms and, 86–87
Hamming window for FIR

filter in, 214, 214

Hanning window for FIR filter
in, 213, 213

hardware for, 88, 216
high pass filters in, 210, 210
infinite impulse response (IIR)

filters in, 217–219, 218
low pass filters in, 209, 210
multirate, 220
noise and, 200, 201
Nyquist-Shannon sampling

theorem in, 192–197, 
195, 196

overflow in, 87–88
phase shift in IIR filters for,

219, 219
physical implementation of

filters in, 215–219
raised cosine filters in, 213
random shifting and, 200–201
rectangular window for FIR

filter in, 212, 212
sample and hold (S/H) in, 201
signal to noise (S/N) ratio in,

198–201, 199
sinc function and filter design

in, 207, 211, 211
software for FIR filters in,

215–216
Taylor series and, 85–86
testing FIR filters for,

216–217, 217, 218
windows for FIR filters and,

211–215, 212, 213, 214
digital subscriber line 

(DSL), 271
digital to analog (D/A)

converters, 191–192, 192, 207
digital video broadcast satellite

(DVBS) standard, 245
direct current (DC), 169
direct current (DC) balance,

baseband communication, 229
direct memory access (DMA),

104, 118
dirt and wear, 286
discharge cycle, in batteries,

165–166, 166
discrete cosine transform 

(DCT), 87
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displacement (spring constant) 
in design of control systems,
40–41

display systems, 83
energy and power supplies 

in, 175
video bus in, 104–106

distortion, 262
anti-aliasing filters and, 203
pulse distortion in, 230–231,

230, 231
distributed control systems,

22–24
dithering (A/D), digital signal

processing (DSP) and,
200–201

documentation of design, 144
downloading times and 

memory, 91
dynamic mechanics, 288–290
dynamic random access memory

(DRAM), 93–95, 96–97, 98
dynamic response (See 

also control systems), 
29, 50–51, 52

E
eavesdropping, 267
Eb/No curves, 234–236, 235,

239, 247
effective address, 91
efficiency, of energy and power

supplies, 169
Einstein, Albert, 67, 68, 69
electric motor curves, 156, 156
electrocution hazards, 132
electromagnetic interference

(EMI), display systems 
and, 113

electrostatic and electromagnetic
emissions/interference,
138–139

embedded processors, 113–114
emissions (See also

interference), 138–143
emotions in robots, 20–22
empowerment of team members,

143–144
encoding/decoding in

communications, 229

encryption, 266–269
energy and power supplies,

147–148, 153–189, 288–290
algorithms for, 178–179
alternating current (AC) 

in, 169
batteries in, 165–166, 166
braking and, 184–186
calculating requirements for,

154–155, 288–290
centralization of energy code

for, 161–162
comparisons of requirements

for, 156
computer hardware and, 

118, 119
conservation of, 160, 162–164
control systems for, 159–189,

167–168
dead man power controllers

and, 174
direct current (DC) in, 169
display systems and, 113
efficiency of use of, 

162–164, 169
electric motor curves in, 

156, 156
field effect transistors (FETs)

in, 166–167
filtering, 140
hardware considerations and,

164–175
heatsinks in, 165
high level design and, 147–148
interference and emissions

from, 169
interference and, 140–141
interrogation at sensors, drain

on, 174
linear regulators for, 169–170
linear, 141
looping and, 189
mechanical considerations in,

183–189
memory and, 174, 182–183
motors and, requirements for,

166–167
noise and, 168
operating system and, 178
overhead and, 179

path checking and, 175
peripheral power control 

and, 175
pipelining for, 179–181
planning for, 160
position prediction and,

183–184
power failure detect (PFD)

signals in, 182
power failures and, 182–183
premission and, 181
prioritizing needs for, 160
processors and, 170–174
range of supply in, 168
rechargeable batteries in, 155
reclaiming/reusing energy and,

187–189
regulation of, 165, 168–170
requirements for, 166–168
routing for minimum energy

consumption, 184
safeguards and, 181–182
scheduling and, 179–181
security and, 181–182
selection of, constraints 

on, 157
sensors, 174, 175
shared motors and, 183
software considerations in,

178–183
sources for, 157
spy hopping and, 176–178, 176
subsystem power control 

and, 174
switching regulators for, 170
technology selection in,

160–161
thrashing in, 182
torque control and, 186–187

energy evaluation, for control
systems, 30

environmental considerations,
132–135

error control (See also
communications), 238–257

bandwidth limited, 
254–256, 256

bidirectional channels in, 241
channel tuning in, 246–247
channels in, 251–252
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checksums, block checksums
in, 241–244

concatenated codes in,
248–252, 249

control systems, 24–25, 25,
27–29, 27, 28, 64

convolutional codes in, 
250, 252

display systems and, 112
duplicate or redundant data

transmission in, 239, 240
eye patterns and "open eye" in,

238–239, 239
forward error correction (FEC)

in, 248
hard disk drives and, 110
interleaver/deinterleaver in,

250, 252, 257
modulators/demodulator in,

250, 251–252
parity bits in, 244
quadrature amplitude

modulation (QAM) in,
255–256, 255, 256

Reed-Solomon checksums in,
244–245

reliability and, 126
retransmission in, ACK/NACK,

245–246
RS encoder/decoder, 250, 252
single/multiple error detection

and correction in, 241–244
steady-state, in control system,

27–29, 27, 28
TCP error-free communication

in, 273
trellis coding in, 264–255
Turbo coding in, 256–257
unidirectional communication

channels in, 247–248
Viterbi codes for, 240, 247,

252–257
Ethernet, 269, 272
execution time, computer

hardware and, 115–117
expenses, 8–9
explosion, in batteries, 130
eye patterns and "open eye" in,

238–239, 239

F
fabless semiconductors, 82
failing, 136–137
fast Fourier transform (FFT), 87
fatigue in materials, 286
Federal Communications

Commission (FCC), 139, 228
feedback, for control systems,

26, 48
fiberglass, 283
field effect transistors (FETs),

166–167
filters

analog, 204–206, 204, 205
anti-aliasing filters and,

192–197, 196, 201–207, 202
band stop filters in, 210, 210
bandpass filters in, 210, 210
Bartlett (triangular) windows

for, 212–213, 213
Blackman window for FIR

filters in, 214–215, 214
delay in IIR filters for, 

219, 219
digital signal processing (DSP)

and (See also anti-aliasing
filters), 207, 215–219,
208–219

finite impulse response (FIR)
filters and, 86, 208–219,
209, 215–217

Fourier transforms in design 
of, 210

Hamming window for FIR
filter in, 214, 214

Hanning window for FIR filter
in, 213, 213, 230

hardware for FIR filters in, 216
high pass filters in, 210, 210
infinite impulse response (IIR)

filters in, 217–219, 218
low pass filters in, 209, 210
phase shift in IIR filters for,

219, 219
power cord, 143
power supplies, vs.

interference, 140
raised cosine filters (RCF) in,

213, 230–231, 231

rectangular window for FIR
filter in, 212, 212

sinc function in, 207, 211, 211
software for FIR filters in,

215–216
testing FIR filters, 216–217,

217, 218
windows for FIR filters and,

211–215, 212, 213, 214
finite impulse response (FIR)

filters (See also filters), 86,
208–219, 208

fire hazards, 130, 132, 277, 278
Firewire, IEEE1394, 105
fixed vs. floating point numbers,

in digital signal processing
(DSP), 87–88, 117

flash memory, 93
flexing strength, 284
flexing, cable ware and, 127
floating point numbers, in digital

signal processing (DSP),
87–88, 117

flowchart of project
management, 3, 4

force conversion control
systems, 41

force evaluation in control
systems, 31

forward error correction 
(FEC), 248

Fourier transforms
compression, 265–266
digital signal processing 

(DSP) and, 86–87
filter design and, 210

Fourier, Joseph, 86, 86
FPGAs, 216
frame dragging, 70
frameworks for control systems,

61–63
freeware, 76
frequency division shared access

communication systems, 262
frequency response, in control

systems, 54–55
frequency selection, 45, 139
frequency shift keying 

(FSK), 234
frequency sweep test, in FIR

filters, 216–217, 217, 218
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frequency, natural, 290
friction, 31–32, 40, 41, 45, 290
friction blocks, 55
full test, 145

G
gain changes, 56, 56
galvanic corrosion, 285–286
game units, 83
Gantt bar chart, 9, 10
Gauss, 62, 63
general packet radio service

(GPRS), 270
general purpose processors,

88–89
general purpose (GP) registers,

98–99
General Theory of Relativity,

69–71
global positioning system 

(GPS), 82
global system for mobile

communication (GSM), 270
governor, 60, 60
gravitational lens, 70–71, 71
gravity, 69–71, 69, 70
grounding, interference vs., 140
gyroscopic torque

display systems and, 112
hard disk drives and, 109–110

H
hackers, 267–269
Hamming window for FIR filter

in, 214, 214
Hanning window for FIR filter

in, 213, 213, 230
hard disk drives, 109–111, 175
headroom, in control systems,

50–51
hearing and safety, 131
heat transfer, 290–291
heatsinks, 165, 290–291
high level design (HDL),

147–151
automation and, 148–151
computer hardware and, 113,

148–151

documentation of, 12–13
locomotion system and, 148
power supply and, 147–148

high pass filters in, 210, 210
Huffman compression, 266
human brain vs. computer 

power, 21
humidity, 135
hunting, 53–56, 55
hysteresis, in control systems,

55–56, 56

I
improving the design, 143
inductors, anti-aliasing filters

and, 205
industry standard architecture

(ISA) bus, 104
infinite impulse response (IIR)

filters in, 217–219, 218
information signal, 233
infrared data association (IRDA)

wireless, 270
infrared wireless networks,

25–26, 107, 270
input/output (I/O), 103–108

bandwidth and, 103
buses for, 103–104
direct memory access (DMA)

and, 104, 118
local area networks (LAN) and,

105–108
memory bus in, 104
video bus in, 104–106

Institute of Electrical and
Electronics Engineers (IEEE),
reliability parameters
definition, 124

instruction set, 99–100
intelligence in robots, 20–22,

79–81, 80, 81
intelligent batteries, 149
interference and emissions,

138–143
connectors and cabling and,

142–143
electrostatic and

electromagnetic fields in,
138–139

energy and power supplies 
in, 169

FCC guidelines on, 139
generation of, 138–141
grounding vs., 140
intersymbol interference (ISI)

in, 230–231, 230, 231, 262
isolating noisy circuitry 

and, 141
linear power supplies and, 141
low frequency and, 139
motors and, 141
package openings and, 142
power cord filters vs., 143
power supply filtering vs., 140
pretested components vs., 141
rise time of signals and, 140
shielding vs., 141–143

Inter-IC (I2C) bus, 105
interleaver/deinterleaver, 

250, 252
internal resistance, in 

batteries, 166
Internet, 82
Internet protocol (IP), 82
intersymbol interference (ISI),

230–231, 230, 231, 262
inverse Laplace transforms,

control systems, 37–39
IP checksums, 243
iteration of computations in

control systems design, 61–62

J–L
jamming communications, 228
jewelry, safety concerns of, 130

kinetic energy (moving 
mass), 31

Laing, Ronald David, 22
Lamarr, Hedy, 263, 263
Laing, R.D., 22, 222
Laplace transforms, in control

systems, 37–39
laser safety, 132
layered model for network

communications, 224–228
leadership, 13–14, 160
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leakage, in batteries, 130
learning, 79–81
least mean square (LMS)

algorithm, 62–65
Legendre, 62, 63
level one (L1)/level two (L2)

cache memory, 97
leverage and safety, 131
leveraging existing technology,

75–76
licensing of software and, 76
licensing software, 120
life testing, 144–145
limit of operations, testing 

for, 144
linear regulators, 169–170
liquid crystal display (LCD), 83
load limits, communication, 260
local area networks (LAN), 82,

102, 105–108, 272
10BT/100BT/1000BT

standards for, baseband, 106,
232, 272

Aloha time division
communication systems 
in, 261

Ethernet and, 272
infrared wireless, 107
Physical layer in, 272
TCP error-free communication

in, 273
user datagram protocol (UDP)

in, 273–274
wireless (802.11b), 

106–107, 269
locomotion system, 148
Loebner Prize, 21
longevity

display systems and, 112, 113
hard disk drives and, 110

loops
energy and power supplies 

in, 189
memory and, 96

low frequency and 
interference, 139

low pass filters in, 209, 210
lubrication, 286
Lunar Excursion Module 

(LEM), 154

M
machining and forming of

materials, 282–283
maneuverability, 57
mass, 40, 48
mass at heights (potential

energy), 31
materials, 282–287

availability of, 284
composites, 283
cost of, 284
dynamic mechanics and,

288–290
fatigue in, 286
fiberglass, 283
galvanic corrosion in, 285–286
heat transfer in, 290–291
lubrication and dirt, 286
machining and forming of,

282–283
metals, 283
natural frequencies and

vibration, 290
plastics, 283
resins, 283
static mechanics and, 287–288
strength of, 284–285
strength to weight ratios in, 282
tolerances for, 287
wood, 283

mathematics of reliability, 124
Maxwell, James Clerk, 138, 139
Maxwell’s Equations, 138
mean time between failure

(MTBF), 110, 125
mean time to failure (MTTF),

124, 125, 126
mean time to repair a failure

(MTTR), 125
mechanical stress, 58
mechanical threats and 

safety, 131
mechanical wracking, 53, 55, 58
mechanics (See also materials),

281–291
memory, 79–81, 90–98, 117–118

addressing, 91–92, 95, 97
buses for, 104
cache, 95–98

chips for, 93–95
content addressable (CAM), 97
destructive readout in, 94
direct memory access (DMA)

and, 104, 118
downloading times and, 91
dynamic random access

(DRAM), 93–98
energy and power supplies 

in, 174
flash type, 93
level one (L1)/level two (L2)

cache, 97
looping and, 96
memory management unit

(MMU) and, 92
pages in, 92
PCMCIA cards for, 93
power failures, 182–183
random access (RAM),

117–118
RAS/CAS cycle in, 95
read only (ROM), 101,

117–118
refresh time in, 94
static random access (SRAM),

94–95
static type, 93–94
stored programs in, 90–91
thrashing in, 97–98

memory bus, 104
memory management unit

(MMU), 92
metals, 283

galvanic corrosion in, 285–286
millions of instructions per

second (MIPS), 115–116
Minkowski, 67
mission statement, 14
mixed signal circuitry, 82–83
modems, 271
modulation, 232–238
modulator/demodulator, 250,

251–252
motor brakes, 186
motor force, in control 

systems, 31
motors, 275–279

AC motors, 275–276
braking in, 186
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motors (continued)
brushes in, DC type, 277
brushless DC, 277–278
control systems for, 

276, 277, 278
cooling for, 276, 277, 278, 279
DC motors, 276–279
DC stepper, 278–279
electric motor curves in, 

156, 156
energy and power supplies in,

requirements for, 
166–167, 183

field effect transistors (FETs)
in, 166–167

fire hazards of, 277, 278
interference and, 141
noise from, 277, 278
organic, 279
piezo-electric, 279
reliability of, 277, 278
revolutions per minute (RPM)

in, 276
shared, for energy 

efficiency, 183
speed of, 276, 277, 278
stopping and braking, 278

moving mass force (kinetic
force), 31

moving parts
reliability and, 128
safety and, 131

MPEG compression, 220, 245,
247, 248, 251, 252, 265

multimedia extension (MMX)
instructions sets, 102

multiple access/media access
control (MAC) layer, OSI
layered network model, 224

multiply and accumulate (MAC)
chips, 85, 216

multirate DSP, 220
multivariable control systems

(See also control systems),
58–67

N
naming the robot, 14
natural frequencies, 290
Network Equipment 

Building System (NEBS)
standards, 135

network interface cards 
(NIC), 232

Network layer, OSI layered
network model, 224

networks, Open Systems
Interconnection (OSI) layered
model for, 224–228

neural networks, 79–81, 80, 81
Newton, Isaac, 75, 75
noise (See also interference), 290

analog, 200
digital, 201
energy and power supplies 

in, 168
motors, 277, 278

nonlinear control elements, 46,
51–52, 52

nonreturn to zero (NRZ) 
codes, 229

Nyquist, 197, 197
Nyquist-Shannon sampling

theorem in, 192–197, 
195, 196

O
"open eye" pattern, 

238–239, 239
open loop control systems,

24–26, 25
Open Systems Interconnection

(OSI) layered model for
networks, 224–228

operating system, energy and
power supplies for, 178

operations per second, in
computer performance,
115–116

organic motors, 279
oscillation frequency (ringing),

in control systems, 44–47
overflow, in digital signal

processing (DSP), 87–88

overhead, in energy and power
supplies, 179

overshoot, in control systems,
44, 46, 50

P
pad brakes, 186
pages of memory, 92
panic buttons, 129
parallel processors, 83–85, 84
parity bits, 244
path checking, energy and power

supplies for, 175
PCMCIA cards, 93, 104
Pentium™ processors, 102
performance, 50

benchmarks, for computers,
116–117, 119

computer hardware and,
115–117

control systems, 50, 65
testing for, 145

performance testing, 145
peripheral component interface

(PCI) video bus, 104
peripheral power control, 175
peripherals for computer (See

also computer hardware),
108–113

personal digital assistants
(PDAs), 83

personalities in robots, 21
personnel, 8
phase shift in IIR filters, 

219, 219
phase shift keying (PSK), 234
Physical layer, OSI 

layered network model, 
224, 226–228, 272

piezoelectric motors, 279
pipelining, energy and power

supplies for, 179–181
plastics, 283
Politics of Experience, The, 

22, 222
polynomial checksums, 243
position, in control systems,

32–39
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position prediction, energy and
power supplies for, 183–184

potential energy (mass at
heights), 30, 31

power, 57
computer hardware and, 90
distributed control system, 23

power cord filters, 143
power failure detect (PFD)

signals, 182
power failures, 182–183
PowerPC™ processors, 102, 117
power states, 173
power supplies (See energy and

power supplies)
premission (See also 

pipelining), 181
Presentation layer, OSI layered

network model, 225
pretty good privacy (PGP)™

encryption, 268–269
printed circuit boards 

(PCBs), 150
printers, 112
prioritizing needs, 160
privacy issues, 260, 268–269
processors

energy and power supplies in,
170–174

memory and, 174
power draw in, 174
power states in, 173
special purpose, 81–83
varying clock in, 171–173, 172
varying voltage in, 171–173
voltage requirements for,

171–173
programming and software,

centralization of energy code
for, 161–162

programming languages, 99–100
progress, problems, plans (PPP)

weekly report, 15
project management, 1–17

appointing the project manager
(PM), 6

checklist for, 16
corrective actions needed in, 6
executing plan for, 13–15

flowchart for, 3, 4
Gantt bar chart in, 9, 10
high level design (HLD)

documents in, 12–13
leadership in, 13–14
progress, problems, plans

(PPP) weekly report, 15
project manager (PM) role in, 5
project plan in, 9–11
proposals in, 7–9
reasons for, 2–3
record keeping in, 7
resource management in, 6, 11
reviews in, 6, 15
risk analysis in, 12
specifications in, 6, 11–13
starting date for, 7
strategies and tactics in, 14–15
timelines for, 5
vision and mission statements

in, 14
project manager (PM) role, 5, 6
proposal, in project

management, 7–9
pulse distortion, 230–231, 

230, 231

Q–R
quadratic equations, in control

systems, 37–39
quadrature amplitude modulation

(QAM), 238, 238, 255–256,
255, 256, 271

quadrature phase shift keying
(QPSK), 271

quality issues, 143–144

radio frequency (RF) (See 
also wireless communication),
82, 106–107

raised cosine filters (RCF) in,
213, 230–231, 231

random access (RAM) memory,
117–118

random errors, 251
random shifting, digital signal

processing (DSP) and,
200–201

RAS/CAS cycle, in memory 
and, 95

ratchet mechanisms, 56
reaction of robot vs. control

system design, 40–41
read only memory (ROM), 101,

117–118
rechargeable batteries, 155
reclaiming/reusing energy,

187–189
record keeping in project

management, 7
rectangular window for FIR

filter in, 212, 212
reduced instruction set computer

(RISC), 100
redundant array of inexpensive

disks (RAID), 110–111
Reed-Solomon checksums,

244–245
refresh of memory, 94
registers, computation and

storage, 98–99
regression test, 145
regulation of power supply, 165,

168–170
relativity, 67–71
reliability, 123–128, 145

availability and, 125–126
batteries and power 

supplies, 127
bulbs, 128
computer hardware and, 119
connector, 126–127
distributed control system, 23
mathematics of, 124–125
mean time between failure

(MTBF) in, 125
mean time to failure (MTTF)

in, 124, 125, 126
mean time to repair a failure

(MTTR) in, 125
motors, 277, 278
moving parts, 128
transistors, 127

removable media, 111
reports, progress, problems,

plans (PPP) weekly report, 15
reprogramming computers, 119
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reserved Aloha, 261
resins, 283
resistors, anti-aliasing filters 

and, 205
resonant frequencies, control

systems, 45
resource management, 

6, 8, 11, 118
response time, in control

systems, 43–44
retransmission of

communications,
ACK/NACK, 245–246

reverse channel bandwidth, 259
reviews, 6, 15, 143
revolutions per minute 

(RPM), 276
ringing (See oscillation

frequency)
rise time of signals and

interference, 140
risk analysis, 12, 74–75, 121
robot toy, 167
rolloff, in anti-aliasing 

filters, 203
rotational energy, 288–290
routing for minimum energy

consumption, 184
row address select (RAS), 95
RS encoder/decoder, 250, 252
RS232/432 standard for

baseband communication, 232
RS422 standard for baseband

communication, 232
RSA encryption/security, 268
run-length compression, 266

S
safety, 57, 128–132, 145

batteries, 129–130
fire and electrocution, 132
human, 128–129
lasers and light, 132
mechanical threats and, 131
moving parts and, 131
panic buttons for, 129
sound pressure, 131

Sagan, Carl, 20
sample and hold (S/H), 201

sampling, Nyquist-Shannon
sampling theorem in,
192–197, 195, 196

scheduling, 9
energy and power supplies in,

179–181
Gantt bar chart in, 9, 10

science fiction and robots, 1–2
second-order control systems,

32–39, 42, 42, 43, 47–48, 48
security

communications and, 266–269
energy and power supplies in,

181–182
self-clocking 

communications, 229
sensors, 55, 174, 175
Session layer, OSI layered

network model, 225
settling time, in control 

systems, 44
Shannon capacity limit,

226–228, 226
Shannon, Claude, 197, 197
shared access communications

(See also communications),
258–264

shared motors, energy efficiency
and, 183

shareware and, 76
sharp parts, 131
shielding, 138, 141–143
shock strength, 284
shock (See also electrocution)

display systems and, 112, 113
hard disk drives and, 109
reliability and, 127

signal to noise (S/N) ratio,
198–201, 226–228, 226,
234–236, 235

sinc function, filter design, 
207, 211, 211

single board computers 
(SBCs), 168

slotted Aloha, 261
software, 76, 120, 121, 149–151

energy and power supplies in,
178–183

FIR filters in, 215–216

sound pressure safety, 131
space, required by control

systems, 69–71
special-purpose computer

hardware, 81–83, 118
specifications, 6, 11–12, 13, 144
speed

braking and, 185–186
control systems for, 

57, 60–61, 67
motors, 276, 277, 278
time and, 67–68

speed governor, 60, 60
speed of execution

computer hardware and, 81–82
pipelining and, 180–181

spin up time
display systems and, 112
hard disk drives and, 110

spoofing, 267
spread spectrum (SS), 

263–264, 270
spring constant in design of

control systems, 40–41
spring force in control 

systems, 31
springs in control systems, 30,

48, 49, 50–51, 55
spy hopping, 176–178, 176
stability in control systems, 

45, 64
standards for baseband

communications, 231–232
starting date in project

management, 7
statement of work, 8
static mechanics, 287–288
static memory, 93–94
static random access memory

(SRAM), 94–95
steady-state error, in control

systems, 27–29, 27, 28, 64
step input function, in control

systems, 29–30, 29
stepper motors, 278–279
stopband anti-aliasing 

filters, 203
storage registers, 98–99
stored programs, 90–91
strategies, 14–15
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strength of materials, 284–285
strength to weight ratios in

materials, 282
stress tests, 144–145
stress, mechanical, 58
subsystem power control, 174
switching regulators, 170
symbol space in modulation,

236–238, 236, 237, 238
synchronization, spy hopping

coordination in, 176–177
system engineers (SE), 11

T
tactics, 14–15
tape drives, 111–112
Taylor series, in digital signal

processing (DSP), 85–86
Taylor, Brook, 85–86, 85
TCP error-free 

communication, 273
TCP/IP, checksums in, 243
teams for development, 150
technologic advance, 75–76
telephone networks, 271
temperature, 132

display systems and, 112, 113
hard disk drives and, 109
semiconductor failure and,

132–133, 133
thermostats in, 52–53, 54

tensile strength, 284, 287–288
testing, 9, 137, 144–145

FIR filters, 216–217, 217, 218
theft, 134–135
thermostats, 52–53, 54
third-party hardware/software,

76, 121
thrashing

cache memory, 97–98
energy and power supplies 

in, 182
time

control systems, 67–68
spy hopping coordination of,

176–177
time division multiple access

(TDMA), 270

time division multiplexing
(TDM), 270

time division shared access
communication systems, 261

timelines for project
management, 5

tolerances, material, 287
torque (See gyroscopic torque)
torque control, in energy and

power supplies, 186–187
total quality management

(TQM), 143
traction, 58
transistors, reliability of, 127
translator, 173
transmission control

protocol/Internet protocol
(TCP/IP), 224

Transport layer, OSI layered
network model, 224

trellis coding, 264–255
tuning, channel, 246–247
Turbo coding, 256–257
Turing Test, 21
Turing, Alan M., 21
TUV, 129

U
undershoot, in control 

systems, 50
Underwriters Labs, 129
unidirectional communication

channels, 247–248
unit test, 145
universal serial bus (USB), 105
use tests, 145
user datagram protocol (UDP),

273–274

V
vandalism, 134–135
velocity, in control systems,

32–39, 57
vibration, 133–134, 290

display systems and, 112
hard disk drives and, 109
reliability and, 126

video bus, 104–106

vision statement, 14
Viterbi codes, 240, 247, 252–257
voice, text to speech 

engines, 274
voltage, computer hardware 

and, 119
voltage level, of batteries,

165–166
voltage regulators, 165, 168–170

W
watchdog circuits, 136
weight on spring as example of

second-order control system,
32–39, 33–36, 36

wheels and tires, 58
windows for FIR filters and,

211–215, 212, 213, 214
WinZip™, 265
wired communication systems,

271–274
wireless communication, 82,

106–107, 269–270
Wireless fidelity (WiFi), 269
wood, 283
word length, 89–90, 117
wracking, mechanical, 53, 55, 58
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